Diatom of the Bacillariophyceae Class in Thermophilic Microbial Mats Present in Sulphurous Hot Springs and their Possible Biotechnological Application
PDF

Keywords

Mexico
Diatoms
Guanajuato
Applications
Sulphurous hot springs
Bacillariophyceae class
Thermophilic microbial mats

How to Cite

1.
Puy-Alquiza MJ, Luna BN, Miranda-Aviles R, Hernández MMS, Aguilera GC. Diatom of the Bacillariophyceae Class in Thermophilic Microbial Mats Present in Sulphurous Hot Springs and their Possible Biotechnological Application. Glob. J. Earth Sci. Eng. [Internet]. 2021 Dec. 29 [cited 2024 Nov. 21];8:80-96. Available from: https://avantipublisher.com/index.php/gjese/article/view/1171

Abstract

The diversity of diatoms in the hot springs of the Comanjilla geothermal zone in northern Guanajuato, Mexico was studied. Hot springs are extreme ecosystems that, despite having high temperatures, constitute an environment for many thermophilic microorganisms (bacteria, cyanobacteria, and diatoms). The thermal water studied is classified as hyperthermal water (45°C to 100°C), of deep origin, and with low mineralization, are of type sulfuric sodium chloride, since the dissolved content of hydrogen sulfide (H2S) is found in concentrations higher than 1mg/L, and its smell is similar to the one of rotten eggs, presents a pH of 7.6 to 9.1 that represents neutrophilic to alkaliphilic environments, with a variable electrical conductivity (EC) (658-698 µs / cm) and total dissolved solids (TDS) (314-24 ppm). In the same way, these hot springs present microbial mats that consist of several stratified layers of green and orange color of 100 cm2, each one, which are dominated by specific types of microorganisms such as bacteria, cyanobacteria, but mainly diatoms, the latter were studied applying the scanning electron microscope and the optical microscope. The morphological characteristics observed in the optical microscope and in the scanning electron microscopy indicate the presence of diatoms of the Bacillariophyceae class, represented by Sellaphora disjuncta (55%), Achnanthes brevipes var. intermedia (45%). This diatom present in thermophilic microbial mats in the sulphurous geothermal zone of Comanjilla represents: a) the first report of said microorganisms in the study area and Mexico; b) an ecosystem of great interest from the biotechnological and industrial point of view; c) an important taxon in terms of diversity and technology; d) an applications in biofuels, environmental monitoring, wastewater treatment, manufacture of fertilizers, production of secondary metabolites, medical compounds, energy sources and food industry and within nanotechnology. It is important to mention that the physical and chemical characteristics of thermal water such as temperature, pH, dissolved solids, electrical conductivity, hardness, alkalinity and silica concentrations, were the major environmental factors influencing the distribution of diatoms in sulphurous hot springs.

https://doi.org/10.15377/2409-5710.2021.08.7
PDF

References

Kale A, Karthick B. The Diatoms Big Significance of Tiny Glass Houses. Resonance 2015; 919-930. https://doi.org/10.1007/s12045-015-0256-6

Bozarth A, Maier UG, Zauner S. Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 2009; 82: 195-201. https://doi.org/10.1007/s00253-008-1804-8

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Sci 1998; 281: 237-240. https://doi.org/10.1126/science.281.5374.237

Ghozzi K, Zemzem M, Dhiab RB, Challouf R, Yahia A, Omrane H, Ouada HB. Screening of thermophilic microalgae and cyanobacteria fromTunisian geothermal sources. J Arid Environ 2013; 97: 14-17. https://doi.org/10.1016/j.jaridenv.2013.05.004

Ramachandra TV, Madhab- Mahapatra D, Karthick B, Gordon R. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind. Engine. Chem Res 2009; 48(19): 8769-8788. https://doi.org/10.1021/ie900044j

Kociolek JP, Blanco S, Coste M, Ector L, Liu, Y, Karthick B, Kulikovskiy M, Lundholm N, Ludwig T, Potapova M, Rimet F, Sabbe K, Sala S, Sar E, Taylor J, Van de Vijver B, Wetzel CE., Williams DM, Witkowski A, Witkowski J. Diatom Base. 2021; Accessed at http://www.diatombase.org on 2021-08-13. doi:10.14284/504

Cowan DA. Enzymes from thennophilic archaebacteria: Current and future applications in biotechnology. Biochem Soc Symp 1992; 58: 149-169.

Lukavsky J, Furnadzhieva S, Pilarski P. Cyanobacteria of the thermal spring at Pancharevo. Act Bot Croat 2011; 70(2): 191-208. https://doi.org/10.2478/v10184-010-0015-4

Reysenbach AL, Cady SL. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 2001; 9(2): 79-86. doi:10.1016/s0966-842x (00)01921-1. https://doi.org/10.1016/S0966-842X(00)01921-1

Singh SP. Extreme Environments and Extremophiles, in National Science Digital Library (CSIR): E- Book, Environ Microbiol CSIR India 2006; 1-35.

Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Cur Opine Biotechnol 2018; 50: 94-100. https://doi.org/10.1016/j.copbio.2017.11.016

Bhandiwad A, Guseva A, Lynd, L. Metabolic engineering of thermo- anaerobacterium thermosaccharolyticum for increased n-Butanol production. Adv. Microbiol 2013; 3: 46-51. https://doi.org/10.4236/aim.2013.31007

Daniel R. The metagenomics of soil. Nat Rev Microbiol 2005; 3: 470-478. https://doi.org/10.1038/nrmicro1160

NORMA Oficial Mexicana NOM-230-SSA1-2002. Salud ambiental. Agua para uso y consumo humano, requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo.

Martin-Jézéquel V, Calu G, Candela L, Amzil Z, Jauffrais T, Séchet V, Weigel P. Effects of organic and inorganic nitrogen on the growth and production of domoic acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in Cultur Marin Drugs 2015; 13: 7067-7086. https://doi.org/10.3390/md13127055

Lorenz P, Eck J. Metagenomics and industrial applications. Nat Rev Microbiol 2005; 3: 510-516. https://doi.org/10.1038/nrmicro1161

Kützing FT. Die Kieselschaligen Bacillarien oder Diatomeen. pp. [i-vii], [1]- 152, pls 1-30. Nordhausen: zu finden bei W. Kohne. 1844 https://doi.org/10.5962/bhl.title.64360

Round FE, Crawford RM, Mann DG. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge 1990.

Toyoda K, Cox EJ, Sims PA, Williams DM. The typification of Achnanthes Bory based on Echinella stipitate Lyngbye, with an account of the morphology and fine structure of Lyngbye's species. Diat Res 2005; 20: 375-386. https://doi.org/10.1080/0269249X.2005.9705643

Novarino G. Some observations on the girdle of Achnanthes longipes. Diat Res 1992; 7: 281-292. https://doi.org/10.1080/0269249X.1992.9705220

Sharp R.J, Riley PW, White D. Heterotrophic thermophilic bacilli. In: Kristjansson, J.K. (Ed.), Thermophilic Bacteria. CRC Press, Boca Raton 1992 19-50. https://doi.org/10.1201/9781003068334-2

Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E. A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 2001; 24: 572-587. https://doi.org/10.1078/0723-2020-00054

VanLandingham SL. Catalogue of the fossil and recent genera and species of diatoms and their synonyms. Part I. Acanthoceras through Bacillaria, Vol 1. Verlag von J Cramer, Lehre 1967.

Hustedt F. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In: Kryptogamen-Flora von Deutschlands, Oesterreichs und der Schweiz (Rabenhorst L, ed). Akademische Verlagsgesellschaft m.b.h, Leipzig 1931; 609-920.

Leira M, López-Rodríguez MC, Carballeira R. Epilithic diatoms (Bacillariophyceae) from running Waters in NW Iberian Peninsula (Galicia, Spain). Anal Jard Bot Madrid 2017; 74(2): e062. https://doi.org/10.3989/ajbm.2421

Pumas C, Pruetiworanan S, Peerapornpisal Y. Diatom diversity in some hot springs of northern Thailand Bot 2018; 24(1): 69-86. https://doi.org/10.2478/botlit-2018-0007

Knight MJ, Senior L, Nancolas B, Ratcliffe S, Curnow P. Direct evidence of the molecular basis for biological silicon transport. Nat Commun 2016; 7: 1-11. https://doi.org/10.1038/ncomms11926

Leland HV, Porter SD. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Fresh Biol 2000; 44: 279-301. https://doi.org/10.1046/j.1365-2427.2000.00536.x

Kim HK, Cho IH, Hwang EA, Kim YJ, Kim BH. Benthic Diatom Communities in Korean Estuaries: Species Appearances in Relation to Environmental Variables. Int. J Environ Res Pub Heal 2019; 16(15): 1-20. https://doi.org/10.3390/ijerph16152681

Potapova M, Charles DF. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol Ind 2007; 7: 48-70. https://doi.org/10.1016/j.ecolind.2005.10.001

Siqueiros-Beltrones DF. Benthic diatoms from laguna Figueroa, Baja California. Ciencias Marinas 1988; 14(2): 85-112. https://doi.org/10.7773/cm.v14i2.586

Jones VJ. The diversity, distribution and ecology of diatoms from Antarctic inland waters. Bio Cons 1996; 5: 1433-1449. https://doi.org/10.1007/BF00051986

Round FE. Benthic Marine Diatoms. Oceanogr. Marin Biol Ann Rev 1971; 9: 83-139.

Srivastava P, Verma J, Grover S, Sardar A. On the importance of diatoms as ecological indicators in river ecosystems: a review. Ind J Plant Sci 2016; 5(1): 70-86.

Hassan GS. Paleoecological Significance of Diatoms in Argentinean Estuaries: what Do They Tell Us About the Environment?. Nova Sci Pub 2010; 80.

Polge N, Sukatar A, Neyran Soylu E, Gönülol A. Epipelic Algal Flora in the Küçükçekmece Lagoon. Turk. J Fish Aquat Sci 2010; 10: 39-45. https://doi.org/10.4194/trjfas.2010.0106

Ezzati J, Dolatabadi N, De la Guardia M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trend. Anal Chem 2011; 30: 1538-1548. https://doi.org/10.1016/j.trac.2011.04.015

Medarevic D, Losic D, Ibric S. Diatoms - Nature materials with great potential for bioapplications. Hemijska industrija 2015; 70(00): 69-69. https://doi.org/10.2298/HEMIND150708069M

Dolatabadi JEN, De la Guardia M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trend Anal Chem 2011; 30(9): 1538-1548. https://doi.org/10.1016/j.trac.2011.04.015

Abo-Shady AM, Zalat AA, Al-Ashkar EA, Ghobara MM. Nanoporous Silica of Some Egyptian Diatom Frustules as a Promising Natural Material. J Nanosci Nanotechnol-Asia 2019; 9: 414. https://doi.org/10.2174/2210681208666180321113834

Wang Y, Chen Y, Lavin C, Gretz MR. Extracellular matrix assembly in diatoms (Bacillariophyceae). iv. ultrastructure of Achnanthes longipes and Cymbella cistula as revealed by high‐pressure freezing/freeze substituton and cryo‐field emission scanning electron microscopy. J Phycol 2000; 36: 367-378. https://doi.org/10.1046/j.1529-8817.2000.99102.x

Kuppusamy SI, Srigopalra S, Yusoff MM, Maniam GP, Govindan N, Choi KC. Potential pharmaceutical and biomedical applications of Diatoms microalgae-An overview. Indian J Geo Marine Sciences 2017; 46(04): 663-667.

Maznah WOW, Mansor M. Aquatic pollution assessment based on attached diatom communities in the Pinang River Basin, Malaysia. Hydrobiol 2002; 487(1): 229-241. https://doi.org/10.1023/A:1022942200740

Valiente MC, Bricheux G, Portelli C, Bohatier J. Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 2012; 31: 778-786. https://doi.org/10.1002/etc.1749

Gale DK, Gutu T, Jiao J, Chang CH, Rorrer GL. Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom. Biosilica Adv Funct Mater 2009; 19: 926-933. https://doi.org/10.1002/adfm.200801137

Tiwari A, Marella, TK. Potential and Application of Diatoms for Industry-Specific Wastewater Treatment. In: Gupta S., Bux F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham 2019. https://doi.org/10.1007/978-3-030-13913-1_15

Dunahay TG, Jarvis EE, Dais SS, Roessler PG. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 1996; 57: 223. https://doi.org/10.1007/BF02941703

De Jonge MD, Holzner C, Baines SB, Twining BS, Ignatyev K, Diaz J, et al. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. PNAS, 2010; 107(36): 15676-15680. https://doi.org/10.1073/pnas.1001469107

Li Y, Gao J, Meng F, Chi J. Enhanced biodegradation of phthalate acid esters in marine sediments by benthic diatom Cylindrotheca closterium. Sci Total Environ 2015; 508: 251 -257. https://doi.org/10.1016/j.scitotenv.2014.12.002

De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L. Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Opt Express 2007; 15: 18082-18088. https://doi.org/10.1364/OE.15.018082

Lin KC, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL. Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosensors and Bioelectronics 2010; 25(10): 2336-2342. https://doi.org/10.1016/j.bios.2010.03.032

Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture 1997; 151: 315 -331. https://doi.org/10.1016/S0044-8486(96)01501-3

Chelf P. Environmental control of lipid and biomass production in two diatom species. J Appl Phycol 1990; 2: 121-129. https://doi.org/10.1007/BF00023373

Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 2018; 50: 94-100. https://doi.org/10.1016/j.copbio.2017.11.016

Cheng J, Feng J, Ge T, Yang W, Zhou J, Cen K. Pyrolytic characteristics of biodiesel prepared from lipids accumulated in diatom cells with growth regulation. J Biosci Bioeng 2015; 120: 161 -166. https://doi.org/10.1016/j.jbiosc.2014.12.010

Rijstenbil JW, Derksen JWM, Gerringa LJA, Poortvliet TCW. Sandee A, van den Berg M, van Drie J, Wijnholds JA. Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Mar Biol 1994; 119: 583-590. https://doi.org/10.1007/BF00354321

Martín LA, Popovich CA, Martinez AM, Damiani MC, Leonardi PI. Oil assessment of Halamphora coffeaeformis diatom growing in a hybrid two -stage system for biodiesel production. Renew Energy 2016; 92: 127-135. https://doi.org/10.1016/j.renene.2016.01.078

Hemaiswarya S, Raja R, Ravi-Kumar R, Ganesan V, Anbazhagan C. Microalgae: a sustainable source for feed in aquaculture. W.J. Microbiol Biotechnol 2011; 27(8): 1737-1746. https://doi.org/10.1007/s11274-010-0632-z

Gao G, Wu M, Fu Q, Li X, Xu J. A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom -forming diatom Skeletonema costatum. Bioresour Technol 2019; 289. https://doi.org/10.1016/j.biortech.2019.121717

Popovich CA, Pistonesi M, Hegel P, Constenla D, Bielsa GB, Martín LA, et al. Unconventional alternative biofuels : Quality assessment of biodiesel and its blends from marine diatom Navicula cincta. Algal Res 2019; 39: 101438. https://doi.org/10.1016/j.algal.2019.101438

Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S. Diatom: A potential bio-accumulator of gold. J Radioanalyt Nuclear Chem 2006; 270(3): 645-649. https://doi.org/10.1007/s10967-006-0475-0

Yamamoto T, Goto I, Kawaguchi O, Minagawa K, Ariyoshi E, Matsuda O. Phytoremediation of shallow organically enriched marine sediments using benthic microalgae. Mar Pollut Bull 2008; 57: 108-115. https://doi.org/10.1016/j.marpolbul.2007.10.006

Hong YW, Yuan DX, Lin QM, Yang TL. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 2008; 56: 1400 -1405. https://doi.org/10.1016/j.marpolbul.2008.05.003

Derrien A, Coiffard LJ, Coiffard C, De Roeck-Holtzhauer Y. Free amino acid analysis of five microalgae. Journal of applied phycology 1998; 10(2): 131-134. https://doi.org/10.1023/A:1008003016458

Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl Microbiol Biotechnol 2003; 60(6): 624-632. https://doi.org/10.1007/s00253-002-1177-3

Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 2011; 4(10): 3930-3941. https://doi.org/10.1039/c0ee00306a

Pytlik N, Kaden J, Finger M, Naumann J, Wanke S, Machill S, Brunner E. Biological synthesis of gold nanoparticles by the diatom Stephanopyxis turris and in vivo SERS analyses. Algal Res 2017; 28: 9-15. https://doi.org/10.1016/j.algal.2017.10.004

Jaccard T, Ariztegui D, Wilkinson KJ. Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii. Chem Geol 2009; 265(3-4): 381-386. https://doi.org/10.1016/j.chemgeo.2009.04.016

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 María Jesús Puy-Alquiza, Berenice Noriega Luna, Raúl Miranda-Aviles, Ma. Mercedes Salazar Hernández, Gilberto Carreño Aguilera