Hydrogeological Analysis of Cretaceous and Tertiary Aquifers in Semiarid Sokoto Basin, Northwestern Nigeria: Implications for Sustainable Groundwater Development
PDF

Keywords

Illo formation
Gwandu formation
Factor and regression analysis
Wurno and gundumi formations
Kalambaina and taloka formations

How to Cite

1.
Wali SU, Alias N, Harun SB, Mohammed IU, Garba ML, Atiku M, Gada MA, Hamisu I. Hydrogeological Analysis of Cretaceous and Tertiary Aquifers in Semiarid Sokoto Basin, Northwestern Nigeria: Implications for Sustainable Groundwater Development. Glob. J. Earth Sci. Eng. [Internet]. 2023 Dec. 17 [cited 2024 Nov. 12];10:27-55. Available from: https://avantipublisher.com/index.php/gjese/article/view/1509

Abstract

Groundwater development in arid and semiarid regions is accelerated by expanded irrigation farming, industrialisation, and municipal water supply. This study provides a detailed hydrogeological analysis of sedimentary aquifers of the Sokoto basin, Northwestern Nigeria, for improved water resource development and management. Hydrogeological data, including static water level (Swl), pumping water level (Pwl), pumping test (Pt), and estimated yield (Ey), were analysed. A total of three hundred (300) observations on Swl, Pt, Pwl, Ey, and Hps were derived from boreholes and analysed using Factor analysis (FA) and Regression analysis (RA). Results showed that Gwandu Formation is the most prolific aquifer. Boreholes can yield more than 24000 litres per hour (L/h). This was followed by The Kalambaina limestone aquifer, which has the potential to yield about 15000 (L/h). However, the Taloka Formation is characterised by very poor aquifers in most of the basin, though along the Jega-Dogon Daji axis, boreholes can yield more than 24000 (L/h). Likewise, boreholes tapping the Wurno Formation can produce a maximum yield of 24000 (L/h). Estimated yields from boreholes were less than 1500 (L/h) from the Gundumi aquifer, and the maximum borehole yields were 17760 (L/h) in the Illo aquifer. Statistical modelling showed that all the analysed variables are significant concerning groundwater potentials and variability of borehole yields in the study area. Therefore, future groundwater resource development in the study area should be based on a proper analysis of the geological configurations of the Sokoto basin. This study provides an outlook on the groundwater potentials of the study area and aquifers that can provide a basis for sustainable groundwater development policy. Thus, the study has shown how multivariate and regression analysis can be used to study the hydrogeological conditions of a particular basin. Therefore, it is hoped that this study's findings will inspire other researchers to take a comparable approach.

https://doi.org/10.15377/2409-5710.2023.10.3
PDF

References

Li B, Rodell M, Famiglietti JS. Groundwater variability across temporal and spatial scales in the central and northeastern U.S. J Hydrol. 2015; 525: 769-80. https://doi.org/10.1016/j.jhydrol.2015.04.033

de Fraiture C, Wichelns D. Satisfying future water demands for agriculture. Agri Water Manage. 2010; 97(4): 502-11. https://doi.org/10.1016/j.agwat.2009.08.008

Foster SSD, Chilton PJ. Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc Lond B Biol Sci. 2003; 358(1440): 1957-72. https://doi.org/10.1098/rstb.2003.1380

Huang G, Zhang M, Liu C, Li L, Chen Z. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanisation and industrialisation: Distributions, sources, and driving forces. Sci Total Environ. 2018; 635: 913-25. https://doi.org/10.1016/j.scitotenv.2018.04.210

Qureshi AS, McCornick PG, Sarwar A, Sharma BR. Challenges and prospects of sustainable groundwater management in the Indus basin, Pakistan. Water Resour Manage. 2009; 24(8): 1551-69. https://doi.org/10.1007/s11269-009-9513-3

Famiglietti JS. The global groundwater crisis. Nat Clim Change. 2014; 4(11): 945-8. https://doi.org/10.1038/nclimate2425

Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, et al. Beneath the surface of global change: Impacts of climate change on groundwater. J Hydrol. 2011; 405(3-4): 532-60. https://doi.org/10.1016/j.jhydrol.2011.05.002

Konikow LF, Kendy E. Groundwater depletion: A global problem. Hydrogeol J. 2005; 13(1): 317-20. https://doi.org/10.1007/s10040-004-0411-8

Rosenzweig C, Strzepek KM, Major DC, Iglesias A, Yates DN, McCluskey A, et al. Water resources for agriculture in a changing climate: international case studies. Glob Environ Change. 2004; 14(4): 345-60. https://doi.org/10.1016/j.gloenvcha.2004.09.003

Taylor CA, Stefan HG. Shallow groundwater temperature response to climate change and urbanisation. J Hydrol. 2009; 375(3-4): 601-12. https://doi.org/10.1016/j.jhydrol.2009.07.009

Bam EKP, Bansah S. Groundwater chemistry and isotopes reveal vulnerability of granitic aquifer in the White Volta River watershed, West Africa. Appl Geochem. 2020; 119: 104662. https://doi.org/10.1016/j.apgeochem.2020.104662

Khan S, Hanjra MA, Mu J. Water management and crop production for food security in China: A review. Agric Water Manage. 2009; 96: 349-60. https://doi.org/10.1016/j.agwat.2008.09.022

Flörke M, Schneider C, McDonald RI. Water competition between cities and agriculture driven by climate change and urban growth. Nat Sustain. 2018; 1(1): 51-8. https://doi.org/10.1038/s41893-017-0006-8

Alfarrah N, Walraevens K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semiarid Regions. Water. 2018; 10(143): 1-24. https://doi.org/10.3390/w10020143

Vaux H. Groundwater under stress: the importance of management. Environ Earth Sci. 2010; 62: 19-23. https://doi.org/10.1007/s12665-010-0490-x

Wali SU, Alias N. Multi-pollutant approach to model contaminants flow in surface and groundwater: A review. IOP Conf Ser: Mater Sci Eng. 2020; 884: 012030. https://doi.org/10.1088/1757-899X/884/1/012030

Wali SU, Dankani IM, Abubakar SD, Gada MA, Usman AA, Shera IM, et al. Review of groundwater potentials and hydrochemistry of semiarid Hadejia-Yobe Basin, Northeastern Nigeria. J Geol Res. 2020; 2(2): 20-33. https://doi.org/10.30564/jgr.v2i2.2140

Naidoo S, Olaniran A. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health. 2013; 11(1): 249-70. https://doi.org/10.3390/ijerph110100249

Yuce G, Pinarbasi A, Ozcelik S, Ugurluoglu D. Soil and water pollution derived from anthropogenic activities in the Porsuk River Basin, Turkey. Environ Geol. 2005; 49(3): 359-75. https://doi.org/10.1007/s00254-005-0072-5

Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, et al. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci Rev. 2008; 89(3-4): 79-96. https://doi.org/10.1016/j.earscirev.2008.04.002

Heidari N, Pearce JM. A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change-related damages. Renew Sustain Energy Rev. 2016; 55: 899-908. https://doi.org/10.1016/j.rser.2015.11.025

Dulal HB, Akbar S. Greenhouse gas emission reduction options for cities: Finding the "Coincidence of Agendas" between local priorities and climate change mitigation objectives. Habitat Int. 2013; 38: 100-5. https://doi.org/10.1016/j.habitatint.2012.05.001

Wali SU. Review of methane emissions and soil carbon in wetlands in dry landscapes, macquarie marshes, Australia. SF J Environ Earth Sci. 2018; 1(2): 1-8.

Wali SU. Methods for understanding GHG flux from floodplain wetlands in dry landscapes. SF J Environ Earth Sci. 2018; 1(2): 1-6.

Kumar CP. Climate change and its impact on groundwater resources. Int J Eng Sci. 2012; 1(5): 43-60.

Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J, et al. Climate change impacts on groundwater and dependent ecosystems. J Hydrol. 2014; 518: 250-66. https://doi.org/10.1016/j.jhydrol.2013.06.037

Sheng Z. Impacts of groundwater pumping and climate variability on groundwater availability in the Rio Grande Basin. Ecosphere. 2013; 4(1): 1-25. https://doi.org/10.1890/ES12-00270.1

Dragoni W, Sukhija BS. Climate change and groundwater: A short review. Dragoni W, Sukhija BS, Eds. Climate change and groundwater. London, UK: Geological Society; 2008, pp. 1-12. https://doi.org/10.1144/SP288.1

Dragoni W. Some considerations on climatic change, water resources, and water needs in the Italian region south of the 438N. In Issar AS, Brown N, Eds. Water, environment, and society in times of climatic change. Dordrecht, The Netherlands: Kluwer; 1998, 241-71.

van Engelenburg J, Hueting R, Rijpkema S, Teuling AJ, Uijlenhoet R, Ludwig F. Impact of changes in groundwater extractions and climate change on groundwater-dependent ecosystems in a complex hydrogeological setting. Water Resour Manage. 2017; 32(1): 259-72. https://doi.org/10.1007/s11269-017-1808-1

Ahzegbobor AP, Oyeyemi KD, Joel ES. Groundwater potential assessment in a sedimentary terrain, southwestern Nigeria. Arab J Geosci. 2016; 9(496): 1-15. https://doi.org/10.1007/s12517-016-2524-5

Anderson HR, Ogilbee W. Aquifers in the Sokoto Basin, Northwestern Nigeria, with a description of the general hydrogeology of the region: Contributions to the hydrology of Africa and the mediterranean region. Geological Survey Water-Supply Paper 1757-L. Washington: United State Department of Interior; 1973, pp. 1-88.

Offodile ME. Groundwater Study and Development in Nigeria. 2nd ed., Jos, Nigeria: Mecon Geology and Engineering Services Ltd.; 2002: pp.1- 453.

Kudamnya EA, Andongma WT. Predictive mapping for groundwater within Sokoto basin, north western Nigeria. J Geogr Environ Earth Sci Int. 2017; 10(2): 1-14. https://doi.org/10.9734/JGEESI/2017/32440

Wali SU, Umar KJ, Gada MA, Usman AA. Evaluation of shallow groundwater in cretaceous and tertiary aquifers of Northern Kebbi State, Nigeria. SF J Environ Earth Sci. 2018; 1(1): 1-11.

Hamidu H, Abdullahi IM, Yelwa NA, Falalu BH, Muhammed D. Comparative study of groundwater resources in the basement complex and sedimentary terrain of Talata Mafara town and environs, Zamfara State, Northwestern Nigeria. Adv Appl Sci Res. 2015; 6(1): 27-33.

Ette OJ, Okuofu CA, Adie DB, Igboro SB, Alagbe SA, Etteh CC. Application of environmental isotope to assess the renewability of groundwater of continental intercalaire aquifer of Sokoto Basin in Northwestern Nigeria. Groundwater Sustain Dev. 2017; 4: 35-41. https://doi.org/10.1016/j.gsd.2016.11.003

Hamidu H, Garba ML, Abubakar YI, Muhammad U, Mohammed D. Groundwater resource appraisals of bodinga and environs, Sokoto Basin Northwestern Nigeria. Nig J Basic Appl Sci. 2017; 24(2): 92-101. https://doi.org/10.4314/njbas.v24i2.13

Adelana SMA, Olasehinde PI, Vrbka P. Groundwater recharge in the cretaceous and tertiary sediment aquifers of northwestern Nigeria, using hydrochemical and isotopic techniques. In: Bocanegra E, Martinez D, Massone H, Eds. Groundwater and Human Development, Mar de Plata, Argentina: 2002, pp. 907 - 915.

Onuigbo EN, Okoro AU, Nwokeabia CN. Clay Minerals as Indicator of Phosphatogenesis: A Case Study of Sokoto Basin, Northwestern Nigeria. J Nat Sci Res. 2017; 7(14): 21-7.

Wali SU. Geography of groundwater in Nigeria. University Press Limited, Usmanu Danfodiyo University Sokoto, Nigeria. 2021: 1-324.

Wali SU, Usman AA, Umar A, Gada MA. Understanding groundwater quality using health-related, operational-related, and other parameters of human health concern in western sokoto basin, Nigeria. Ann Ecol Environ Sci. 2023; 5(1): 35-53. https://doi.org/10.22259/2637-5338.0501004

Wali SU, Abubakar SD, Dankani IM, Gada MA. Distribution of public water supply: analysis of population density and water supply in Kebbi State, Northwestern Nigeria. Eur J Soc Sci Stud. 2018; 3(4): 36-54. http://dx.doi.org/10.46827/ejsss.v0i0.472

Wali SU, Abubakar SD, Dankani IM, Gada MA, Usman AA. Hydrogeology and hydrochemistry of the Sokoto basin, Northwestern Nigeria: A review. Sokoto J Geogr Environ. 2019; 1(1): 106-22.

Wali SU, Alias N, Bin Harun S. Hydrogeochemical evaluation and mechanisms controlling groundwater in different geologic environments, Western Sokoto Basin, Northwestern Nigeria. SN Appl Sci. 2020; 2: 1-28. https://doi.org/10.1007/s42452-020-03589-y

Wali SU, Alias N, Harun SB, Umar KJ, Gada MA, Dankani IM, et al. Water quality indices and multivariate statistical analysis of urban groundwater in semiarid Sokoto Basin, Northwestern Nigeria. Groundw Sustain Dev. 2022; 18(100779): 1-18. https://doi.org/10.1016/j.gsd.2022.100779

Wali SU, Bakari A. Assessment of groundwater variability over different geologic formations across Kebbi State, Nigeria. Zaria Geographer. 2016; 23(1): 155-67.

Paul II, Bayode EN. Watershed characteristics and their implication for hydrologic response in the Upper Sokoto Basin, Nigeria. J Geogr Geol. 2012; 4(2): 147-55. https://doi.org/10.5539/jgg.v4n2p147

Gada MA. Understanding the water balance of basement complex areas in Sokoto Basin, Northwest Nigeria for improved groundwater management. (PhD Thesis), School of Applied Sciences, Environmental Science and Technology (Crafield Univetsity); 2014, p. 203. Available from: http://dspace.lib.cranfield.ac.uk/handle/1826/9296

Abdulrahim MA, Ifabiyi IP, Ismaila A. Time series analyses of mean monthly rainfall for drought management in Sokoto, Nigeria. Ethiop J Environ Stud Manage. 2013; 6(5): 461-70. https://doi.org/10.4314/ejesm.v6i5.3

Ekoh HC. Analysis of rainfall trend in Sokoto State, Nigeria (1987-2016). World News Nat Sci. 2020; 28: 171-86.

Ekpoh IJ, Eminie N. The Effects of Recent Climatic Variations on Water Yield in the Sokoto Region of Northern Nigeria. Int J Bus Soc Sci. 2011; 2(7): 251-6.

Ezemonye MN, Emeribe CN. Variations in rainfall and temperature distributions over North-East Sokoto Rima River Basin, Nigeria. Nig J Sci Res. 2016; 15(2): 283-9.

Omolabi PO, Fagbohun BJ. Mapping suitable sites for water storage structure in the Sokoto-Rima basin of northwest Nigeria. Remote Sens Appl: Soc Environ. 2019; 13: 12-30. https://doi.org/10.1016/j.rsase.2018.10.006

Abdullahi SA, Muhammad MM, Adeogun BK, Mohammed IU. Assessment of water availability in the Sokoto Rima River Basin. Resources and Environment 2014; 4(4): 220-33. https://doi.org/10.5923/j.re.20140405.03

Moumouni A, Hamza H, Abubakar M. Stratigraphic Review of the Cretaceous Tertiary Deposits of the Iullemmeden Basin in Niger and Nigeria. Asian J Appl Sci. 2016; 4(2): 540-9.

Moody RTJ. African Basins. In Selley RC, Ed., Sedimentary Basins of the World, vol. 3. Elsevier Science; 1997, pp. 89-103.

Obaje NG. The Sokoto Basin (Nigerian sector of the iullemmeden basin). In Obaje NG, Ed., Geology and mineral resources of Nigeria, lecture notes in earth sciences. vol. 120. Berlin Heidelberg: Springer-Verlag; 2009; pp. 77-89. https://doi.org/10.1007/978-3-540-92685-6_7

Kogbe CA. Cretaceous and tertiary of the iullemmeden basin in Nigeria (West Africa). Cretaceous Res. 1981; 2: 129-86. https://doi.org/10.1016/0195-6671(81)90007-0

Anderson HR, Ogilbee W. Exploration for artesian water in the Sokoto Basin, Nigeria; U.S. Geological Survey. 1967; 5(3): 42-6. https://doi.org/10.1111/j.1745-6584.1967.tb03670.x

Goni IB, Aji MM, Ibrahim M, Maduabuchi C, Kachallah M, Imam MK, et al. Geochemical studies of phreatic aquifer water in the Nigerian Sector of Iullummeden Basin, NW Nigeria. J Min Geol. 2013; 49(1): 1-11.

Loehnert EP. Major chemical and isotope variations in surface and subsurface waters of West Africa. J Afr Earth Sci. 1988; 7(3): 579-88. https://doi.org/10.1016/0899-5362(88)90047-4

Toyin A, Adekeye OA, Bale RB, Sanni ZJ, Jimoh OA. Lithostratigraphic description, sedimentological characteristics and depositional environments of rocks penetrated by Illela borehole, Sokoto Basin, NW Nigeria: A connection between Gulf of Guinea Basins. J Afr Earth Sci. 2016; 121: 255-66. https://doi.org/10.1016/j.jafrearsci.2016.06.011

Nwankwo LI. Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin, Nigeria. Geothermics. 2015; 54: 76-81. https://doi.org/10.1016/j.geothermics.2014.12.001

Emujakporue G, Ofoha CC, Kiani I. Investigation into the basement morphology and tectonic lineament using aeromagnetic anomalies of Parts of Sokoto Basin, North Western, Nigeria. Egy J Pet. 2018; 27(4): 671-81. https://doi.org/10.1016/j.ejpe.2017.10.003

Petters SW. Stratigraphic history of the south-central Saharan region. Geol Soc Am Bull. 1979; 90(8): 753-60. https://doi.org/10.1130/0016-7606(1979)90<753:SHOTSS>2.0.CO;2

Musa A, Mohammed IU. Geophysical investigations of lithology and groundwater potentials of recharge zones. Int J Multidis Res Dev. 2015; 2(3): 437-46.

Obaje NG, Aduku M, Yusuf I. The Sokoto Basin of Northwestern Nigeria: A preliminary assessment of the hydrocarbon prospectivity. Pet Technol Dev J. 2013; 3(2): 66-80.

Kogbe CA. Petrographic study of maestriehtian and post-paleoeene formations of north-western Nigeria (Iullemmeden Basin). Geol Rundsch. 1975: 216-29. https://doi.org/10.1007/BF01820663

Bassey C, Eminue O. Preliminary evaluation of major and trace elements content of Cretaceous – Palaeogene Formation of the Sokoto Basin, Northwestern Nigeria. Nafta. 2014; 65(1): 69-76.

Yelwa NA, Abdullahi IM, Nabage NA, Kasim SA. Petrography and Paleoenvironmental Interpretation of Taloka and Dukamaje Formations, Southern Gadon Mata, Goronyo, Sokoto Basin-Nigeria. J Environ Earth Sci. 2015; 5(2): 165-74.

Moody RTJ, Sutcliffe PJC. The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Res. 1991; 12: 137-57. https://doi.org/10.1016/S0195-6671(05)80021-7

Alagbe SA. Preliminary evaluation of hydrochemistry of the Kalambaina Formation, Sokoto Basin, Nigeria. Environ Geol. 2006; 51(1): 39-45. https://doi.org/10.1007/s00254-006-0302-5

Dragon K. Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). J Hydrol. 2006; 331(1-2): 272-9. https://doi.org/10.1016/j.jhydrol.2006.05.032

Munoz-Carpena R, Ritter A, Li YC. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. J Contam Hydrol. 2005; 80(1-2): 49-70. https://doi.org/10.1016/j.jconhyd.2005.07.003

Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D. Application of factor and cluster analysis for characterisation of river and estuarine water systems – A case study: Mahanadi River (India). J Hydrol. 2006; 331(3-4): 434-45. https://doi.org/10.1016/j.jhydrol.2006.05.029

Klovan JE, Imbrie J. An Algorithm and FORTRAN-IV Program for large-scale Q-Mode Factor analysis and calculation of Factor scores'. Mathematical Geol. 1971; 3(1): 61-77. https://doi.org/10.1007/BF02047433

Idowu OA, Martins O, Ajayi O. Occurrence of groundwater in parts of the Dahomey Basin, southern Nigeria. J Min Geol. 1999; 35(2): 229-36.

Aizebeokhai AP, Oyeyemi KD, Joel ES. Groundwater potential assessment in a sedimentary terrain, southwestern Nigeria. Arab J Geosci. 2016; 9(496): 1-15. https://doi.org/10.1007/s12517-016-2524-5

Alile OM, Ujuanbi O, Evbuomwan IA. Geoelectric investigation of groundwater in Obaretin – Iyanomon locality, Edo state, Nigeria. J Geol Min Res. 2011; 3(1): 13-20.

Emenike EA. Geophysical exploration for groundwater in a sedimentary environment: Case study from Nanka over Nanka Formation in Nambra Basin Southeastern Nigeria. Glob J Pure Appl Sci. 2001; 7(1): 97-101. https://doi.org/10.4314/gjpas.v7i1.16212

Nfor BN, Olobaniyi SB, Ogala JE. Extent and distribution of groundwater resources in parts of Anambra State, Southeastern Nigeria. J Appl Sci Environ Manag. 2007; 11(2): 215-21. https://doi.org/10.4314/jasem.v11i2.55050

Akinwumiju AS, Orimoogunje OOI. Predicting the yields of deep wells of the deltaic formation, Niger Delta Nigeria. Hydrol Current Res. 2013; 4: 145. https://doi.org/10.4172/2157-7587.1000145

Aluko KO, Raji WO, Ayolabi EA. Application of 2-D resistivity survey to groundwater aquifer delineation in a sedimentary terrain: A case study of southwestern Nigeria. Water Utility Journal. 2017;17(71-79).

Ifabiyi IP, Ashaolu ED, Omotosho O. Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the Regolith Aquifer: a Study from Ilorin, Nigeria. Momona Ethiop J Sci. 2016; 8(1): 23-36. https://doi.org/10.4314/mejs.v8i1.2

Emmanuel BA, Martins EO, Jolly B. Borehole depth and regolith aquifer hydraulic characteristics of bedrock types in Kano area, Northern Nigeria. Afr J Environ Sci Technol. 2011; 5(3): 228-37.

MacDonald AM, Bonsor HC, Dochartaigh BÉÓ, Taylor RG. Quantitative maps of groundwater resources in Africa. Environ Res Lett. 2012; 7(024009): 1-7. https://doi.org/10.1088/1748-9326/7/2/024009

Agyekum W, Klitten K, Armah T, Banoeng-Yakubo B, Amartey EO. Geophysical borehole logging for control of driller's records: hydrogeological case study from Voltaian sedimentary rocks in northern Ghana. Appl Water Sci. 2013; 3(2): 491-500. https://doi.org/10.1007/s13201-013-0097-y

Dapaah-Siakwan S, Gyau-Boakye P. Hydrogeologic framework and borehole yields in Ghana. Hydrogeol J. 2000; 8: 405-16. https://doi.org/10.1007/PL00010976

Nata T, Bheemalingeswara K, Abdulaziz M. Hydrogeological investigation and groundwater potential assessment in Haromaya Watershed, Eastern Ethiopia. Momona Ethiop J Sci. 2010; 2(1): 26-48. https://doi.org/1010.4314/mejs.v2i1.49649

Begashaw G, Nt T. Characteristics and Productivity of the Sediments and Volcanic Rocks Aquifers in Sunuta Sub-Basin, Northeast Ethiopia. Asian Rev Environ Earth Sci. 2017; 4(1): 46-57. 10.20448/journal.506.2017.41.46.57

Worthington PF. Geophysical investigations of groundwater resources in the Kalahari Basin. Geophysics. 1977; 42(4): 838-49. https://doi.org/10.1190/1.1440751

Krhoda GO. Groundwater assessment in sedimentary basins of eastern Kenya, Africa. Regional Characterisation of Water Quality Proceeûings of the Baltimore Symposium, May 1989. pp. 111-24.

Hahn J, Lee Y, Kim N, Hahn C, Lee S. The groundwater resources and sustainable yield of Cheju Volcanic Island, Korea. Environ Geol. 1997; 33(1): 43-53. https://doi.org/10.1007/s002540050223

Al-Abadi AM. Modeling of groundwater productivity in northeastern Wasit Governorate, Iraq, using frequency ratio and Shannon's entropy models. Appl Water Sci. 2015; 7(2): 699-716. https://doi.org/10.1007/s13201-015-0283-1

Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MAH, et al. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem. 2004; 19(2): 181-200. https://doi.org/10.1016/j.apgeochem.2003.09.006

Moyce W, Mangeya P, Owen R, Love D. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion. Phys Chemi Earth. 2006; 31(15-16): 988-94. https://doi.org/10.1016/j.pce.2006.08.013

Qin R, Wu Y, Xu Z, Xie D, Zhang C. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China. Appl Geochem. 2013; 31: 142-58. https://doi.org/10.1016/j.apgeochem.2013.01.001

Duttagupta S, Mukherjee A, Bhattacharya A, Bhattacharya J. Wide exposure of persistent organic pollutants (PoPs) in natural waters and sediments of the densely populated Western Bengal basin, India. Sci Total Environ. 2020; 717(137187): 1-9. https://doi.org/10.1016/j.scitotenv.2020.137187

Lapworth DJ, Krishan G, MacDonald AM, Rao MS. Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Sci Total Environ. 2017; 599-600: 1433-44. https://doi.org/10.1016/j.scitotenv.2017.04.223

Liao L, Jean J-S, Chakraborty S, Lee M-K, Kar S, Yang H-J, et al. Hydrogeochemistry of groundwater and arsenic adsorption characteristics of subsurface sediments in an Alluvial Plain, SW Taiwan. Sustainability. 2016; 8(1305): 1-15. https://doi.org/10.3390/su8121305

Mencio A, Mas-Pla J, Otero N, Regas O, Boy-Roura M, Puig R, et al. Nitrate pollution of groundwater; all right..., but nothing else? Sci Total Environ. 2016; 539: 241-51. https://doi.org/10.1016/j.scitotenv.2015.08.151

Parrone D, Ghergo S, Frollini E, Rossi D, Preziosi E. Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy. J Geochem Explor. 2020; 217(106590): 1-14. https://doi.org/10.1016/j.gexplo.2020.106590

Voudouris KS, Lambrakis NJ, Papatheothorou G, Daskalaki P. An application of Factor Analysis for studying the hydrogeological conditions in Plio-Pieistocene Aquifers of NW Achaia (NW Peloponnesus, Greece). Math Geol. 1997; 29(1): 44-59. https://doi.org/10.1007/BF02769619

Hynds P, Misstear BD, Gill LW, Murphy HM. Groundwater source contamination mechanisms: physicochemical profile clustering, risk factor analysis and multivariate modelling. J Contam Hydrol. 2014; 159: 47-56. https://doi.org/10.1016/j.jconhyd.2014.02.001

Kazakis N, Mattas C, Pavlou A, Patrikaki O, Voudouris K. Multivariate statistical analysis for assessing groundwater quality under different hydrogeological regimes. Environ Earth Sci. 2017; 76(9): 1-13. https://doi.org/10.1007/s12665-017-6665-y

Lambrakis N, Antonakos A, Panagopoulos G. The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res. 2004; 38(7): 1862-72. https://doi.org/10.1016/j.watres.2004.01.009

Szabó NP. Hydraulic conductivity explored by factor analysis of borehole geophysical data. Hydrogeol J. 2015; 23(5): 869-82. 10.1007/s10040-015-1235-4

Katsman R, Aharonov E, Haimson BC. Compaction bands induced by borehole drilling. Acta Geotech. 2009; 4(3): 151-62. https://doi.org/10.1007/s11440-009-0086-3

Katsman R, Haimson BC. Modelling partially-emptied compaction bands induced by borehole drilling. J Struc Geol. 2011; 33(4): 690-7. https://doi.org/10.1016/j.jsg.2011.01.010

Liang C-P, Lin T-C, Suk H, Wang C-H, Liu C-W, Chang T-W, et al. Comprehensive assessment of the impact of land use and hydrogeological properties on the groundwater quality in Taiwan using factor and cluster analyses. Sci Total Environ. 2022; 851: 158135. https://doi.org/10.1016/j.scitotenv.2022.158135

Demuth SH, I. Estimation of flow parameters applying hydrogeological area information. Flow Regimes from International Experimental and Network Data (Proceedings of the Braunschweii Conference, October 1993) IAHS Publ no 221. 1994: pp. 151-7.

George NJ, Emah JB, Ekong UN. Geohydrodynamic properties of hydrogeological units in parts of Niger Delta, southern Nigeria. J Afr Earth Sci. 2015; 105: 55-63. https://doi.org/10.1016/j.jafrearsci.2015.02.009

Szucs P, Horne RN. Applicability of the ACE algorithm for multiple regression in hydrogeology. Comput Geosci. 2008; 13(1): 123-34. https://doi.org/10.1007/s10596-008-9112-z

Yidana SM, Ophori D, Banoeng-Yakubo B. Hydrogeological and hydrochemical characterisation of the Voltaian Basin: the Afram Plains area, Ghana. Environ Geol. 2007; 53(6): 1213-23. https://doi.org/10.1007/s00254-007-0710-1

Martin N, van de Giesen N. Spatial distribution of groundwater production and development potential in the Volta River basin of Ghana and Burkina Faso. Water Int. 2005; 30(2): 239-49. https://doi.org/10.1080/02508060508691852

Le Borgne T, Bour O, Paillet FL, Caudal JP. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J Hydrol. 2006; 328(1-2): 347-59. https://doi.org/10.1016/j.jhydrol.2005.12.029

Roques C, Bour O, Aquilina L, Dewandel B. High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif, France. Hydrogeol J. 2016; 24(8): 2157-70. 10.1007/s10040-016-1451-6

Geyh MA, Wirth K. 14C ages of confined groundwater from the Gwandu aquifer, Sokoto Basin, northern Nigeria. J Hydrol. 1980; 48(3-4): 281-8. https://doi.org/10.1016/0022-1694(80)90120-1

Rao NS, Chakradhar GKJ, Srinivas V. Identification of Groundwater Potential Zones Using Remote Sensing Techniques In and Around Guntur Town, Andhra Pradesh, India. J Indian Soc Remote Sens. 2001; 29(1&2): 69-78. https://doi.org/10.1007/BF02989916

Chandra S, Rao VA, Krishnamurthy NS, Dutta S, Ahmed S. Integrated studies for characterisation of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeol J. 2005; 14(5): 767-76. https://doi.org/10.1007/s10040-005-0480-3

Ganapuram S, Kumar GTV, Krishna IVM, Kahya E, Demirel MC. Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw. 2009; 40(7): 506-18. https://doi.org/10.1016/j.advengsoft.2008.10.001

Murugesan V, Krishnaraj S, Kannusamy V, Selvaraj G, Subramanya S. Groundwater potential zoning in Thirumanimuttar sub-basin Tamilnadu, India—A GIS and remote sensing approach. Geo-spat Inf Sci. 2011; 14(1): 17-26. https://doi.org/10.1007/s11806-011-0422-2

Shah T. Groundwater and Human Development: Challenges and Opportunities in Livelihoods and Environment. p. 15-26. In: Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop. Groundwater Governance in Asia. Series 1. 8-9 February. Roorkee, India: Sharma BR, Villholth KG, Sharma KD, Eds. Contribution to Irrigation for food security and constraints to sustainability. 2005: pp. 1-283.

Doll P, Fiedler K. Global-scale modelling of groundwater recharge. Hydrol Earth Sys Sci. 2008; 12: 863-85. https://doi.org/10.5194/hess-12-863-2008

Oelkers EH, Hering JG, Zhu C. Water: Is There a Global Crisis? Elements. 2011; 7(3):157-62. https://doi.org/10.2113/gselements.7.3.157

Rockström J, Falkenmark M, Allan T, Folke C, Gordon L, Jägerskog A, et al. The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability. Ecohydrology. 2014; 7: 1249-61. https://doi.org/10.1002/eco.1562

Wada Y, Wisser D, Bierkens MFP. Global modelling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Sys Dyn. 2014; 5(1): 15-40. https://doi.org/10.5194/esd-5-15-2014

Kalhor K, Ghasemizadeh R, Rajic L, Alshawabkeh A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundwater Sustain Dev. 2019; 8: 104-21. https://doi.org/10.1016/j.gsd.2018.10.004

Bogardi JJ, Dudgeon D, Lawford R, Flinkerbusch E, Meyn A, Pahl-Wostl C, et al. Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr Opin Environ Sustain. 2012; 4(1): 35-43. https://doi.org/10.1016/j.cosust.2011.12.002

Sadoff CW, Grey D. Sink or Swim? Water security for growth and development. Water Policy. 2007; 9(6): 545-71. https://doi.org/10.2166/wp.2007.021

Everard M. Community-based groundwater and ecosystem restoration in semiarid north Rajasthan (1): Socio-economic progress and lessons for groundwater-dependent areas. Ecosyst Serv. 2015; 16: 125-35. https://doi.org/10.1016/j.ecoser.2015.10.011

Stephen F, Pulido-Bosch A, Vallejos Á, Molina L, Llop A, MacDonald AM. Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semiarid regions. Hydrogeol J. 2018; 26(8): 2781-91. https://doi.org/10.1007/s10040-018-1830-2

Mays LW. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour Manage. 2013; 27(13): 4409-24. https://doi.org/10.1007/s11269-013-0436-7

Gupta AD, Babel MS. Challenges for Sustainable Management of Groundwater Use in Bangkok, Thailand. Int J Water Resour Dev. 2005; 21(3): 453-64. https://doi.org/10.1080/07900620500036570

Wichelns D, Qadir M. Achieving sustainable Irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric Water Manage. 2015; 157: 31-8. https://doi.org/10.1016/j.agwat.2014.08.016

Dhara SK. The arid and semiarid eco-regions; Understanding the vulnerabilities across arid regions of India through community experiences of water: A rapid appraisal. 16/07/2020. pp. 111-23. Available from http://ced.org.in/docs/inecc/Voices_of_Vulnerability/VV-arid-eco-region.pdf

Pereira LS, Oweis T, Zairi A. Irrigation management under water scarcity. Agric Water Manage. 2002; 57: 175-206. https://doi.org/10.1016/S0378-3774(02)00075-6

Montenegro SG, Montenegro A, Ragab R. Improving agricultural water management in the semiarid region of Brazil: Experimental and modelling study. Irrig Sci. 2009; 28(4): 301-16. https://doi.org/10.1007/s00271-009-0191-y

Hashemy Shahdany SM, Firoozfar A, Maestre JM, Mallakpour I, Taghvaeian S, Karimi P. Operational performance improvements in irrigation canals to overcome groundwater overexploitation. Agric Water Manage. 2018; 204: 234-46. https://doi.org/10.1016/j.agwat.2018.04.014

Foster SSD. The interdependence of groundwater and urbanisation in rapidly developing cities Urban Water 2001; 3: 185-92. https://doi.org/10.1016/S1462-0758(01)00043-7

Timmins C. Measuring the dynamic efficiency costs of regulators' preferences: Municipal water utilities in the Arid West. Econometrica. 2002; 70(2): 603-29. https://doi.org/10.1111/1468-0262.00297

Cavalcante Júnior R, Vasconcelos Freitas M, da Silva N, de Azevedo Filho F. Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies. 2019; 12(5): 1-20. https://doi.org/10.3390/en12050904

Dube T, Phiri K. Rural Livelihoods under stress: the impact of climate change on livelihoods in south western Zimbabwe. Am Int J Contemp Res. 2013; 3(5): 11-25.

Kaushik G, Sharma KC. Climate change and rural livelihoods-adaptation and vulnerability in Rajasthan. Glob NEST J. 2015; 17(10): 1-9.

Westengen OT, Brysting AK. Crop adaptation to climate change in the semiarid zone in Tanzania: the role of genetic resources and seed systems. Agric Food Secur. 2014; 3(3): 1-12. https://doi.org/10.1186/2048-7010-3-3

Lema MA, Majule AE. Impacts of climate change, variability and adaptation strategies on agriculture in semiarid areas of Tanzania: The case of Manyoni District in Singida Region, Tanzania. Afr J Environ Sci Technol. 2009; 3(8): 206-18. https://doi.org/10.5897/AJEST09.099

Burke JJ, Sauveplane C, Moench M. Groundwater management and socio-economic responses. Nat Resour Forum. 1999; 23: 303-13. https://doi.org/10.1111/j.1477-8947.1999.tb00918.x

Praveen KV. Evolution and Emerging Issues in Fertilizer Policies in India. Econ Affairs. 2014; 59(2): 163. https://doi.org/10.5958/j.0976-4666.59.2.016

Garrido A, Mart´ınez-Santos P, Ram'on Llamas M. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience. Hydrogeol J. 2006;14: 340–9.

Foster SSD, Skinner AC. Groundwater Protection: The Science and Practice of Land Surface Zoning. Groundwater Quality: Remediation and Protection (Proceedings of the Prague Conference May 1995 IAHS Publ No 225. 1995: pp. 471-82.

Llamas MR, Martínez-Santos P. Intensive groundwater use: silent revolution and potential source of social conflicts. J Water Resour Plan Manage. 2005; 131(5): 337-41. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:5(337)

Custodio E. Intensive groundwater development: A water cycle transformation, a social revolution, a management challenge. In: Martinez-Cortina L, Garrido A, Lopez-Gunn E, Eds. Intensive groundwater development. CRC Press; 2010, pp. 259-98.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Saadu U. Wali, Noraliani Alias, Sobri Bin Harun, Ibrahim U. Mohammed, Muhammed L. Garba, Mudassir Atiku, Murtala A. Gada, Isah Hamisu