Abstract
Present study aims to understand the possible influence of changing sea-water pH on the isotopic composition (δ18O and δ13C) of modern planktic foraminiferal shell in twenty three surface sediment samples (including grab and core tops of piston and gravity cores), collected along a north-south trending transect in the western Indian Ocean. The results, though initial indicate that the isotopic values (δ18O and δ13C) in general increase as the sea-water becomes less alkaline. It suggests that the sea-water pH also appears to influence isotopic values of planktic foraminiferal species G. bulloides, besides other factors influencing isotopic values in planktic foraminiferal shell.
References
Emiliani E. Pleistocene temperatures. J Geol 1955; 63: 538-78. https://doi.org/10.1086/626295
Shackleton NJ. Oxygen isotopes, ice volume and sea level. Quat Sci Rev1987; 6: 183-90. https://doi.org/10.1016/0277-3791(87)90003-5
Spezzaferri S, Spiegler, D. Fossil planktic foraminifera (an overview). Palaontologische Zeitschrift 2005; 70 (1): 149-66. https://doi.org/10.1007/BF03021759
Miller KG, et al. Cenozoic global sea-level, sequences and the New Jersey Transect: Results from coastal plain and slope drilling. Rev Geophy 1998; 36: 569-601. https://doi.org/10.1029/98RG01624
Spezzaferri S, McKenzie JA and Isern A. Linking the oxygen isotope record of Late Neogene eustasy to sequence stratigraphic patterns along the Bahamas Margin: Results from a paleo-oceanographic study of ODP Leg 166, Site 1006 sediments. Mar Geol 2002; 185(1/2): 95-120. https://doi.org/10.1016/S0025-3227(01)00292-4
Curry WB, Duplessy JC, Labeyrie LD and Shackleton NJ. Changes in the distribution of δ13C of deep water ΔCO2 between the last glaciation and the Holocene. Paleoceanography 1998; 3: 317-41. https://doi.org/10.1029/PA003i003p00317
Vincent E and Berger WH. Carbon dioxide and polar cooling in the Miocene: the Monterey Hypothesis. In: Sundquist ET, Broecker WS, Eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Geophysical Monograph 1985; pp.455-468. https://doi.org/10.1029/GM032p0455
Hodell DA and Woodruf F. Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications. Paleoceanogra1994; 9: 405-26. https://doi.org/10.1029/94PA00292
Jacobs E, Weissert H, Shields G and Stille P. The Monterey event in the Mediterranean: a record from shelf sediments of Malta. Paleoceanogra 1996; 11: 717-28. https://doi.org/10.1029/96PA02230
Shackleton NJ and Hall MA. The Late Miocene stable isotope record, Site 906. In: Schackleton NJ, Curry WB, Richter C, Bralower TJ, Eds. Proceedings of the Ocean Drilling Program, Science Results. College Station, TX (Ocean Drilling Program) 1997; pp.367-374.
Pearson PN, Shackleton NJ, Weedon PG and Hall MA. Multi species planktonic foraminifer stable isotope stratigraphy through Oligocene/Miocene boundary climatic cycles, Site 926. In: Schackleton NJ, Curry WB, Richter C., Bralower TJ, Eds. Proceedings of the Ocean Drilling Program, Science Results. College Station, TX (Ocean Drilling Program) 1997; pp.441-449.
Bijma J, Spero HJ and Lea DW. Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G, Eds. Use of Proxies in Paleoceanography Examples from the South Atlantic, Springer, Berlin, Heidelberg 1999; pp 489-512. https://doi.org/10.1007/978-3-642-58646-0_20
Spero HJ, Bijma J, Lea DW and Bemis BE. Effect of seawater carbonate concentration of foraminiferal carbon and oxygen isotopes. Nature 1997; 390(6659): 497-500. https://doi.org/10.1038/37333
Bemer RA, Lasaga AC and Garrels RM. Am J Sci 1983; 283: 641. https://doi.org/10.2475/ajs.283.7.641
Volkman R and Mensch M. Stable isotope composition (δ18O, δ13C) of living planktic foraminifers in the outer Laptev Sea and the Fram Strait. Mar Micropal 2001; 42: 163-88. https://doi.org/10.1016/S0377-8398(01)00018-4
King AL and Howard WR. δ18O seasonality of planktonic foraminifera from Southern Ocean sediment traps: Latitudinal gradients and implications for paleoclimate reconstructions. Mar. Micropal 2005; 56: 1-24. https://doi.org/10.1016/j.marmicro.2005.02.008
Kozdon R, Ushikubo T, Kita NT, Spicuzza M and Valley JW. Intra-test oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe. Chem Geol 2009; 258: 327-337. https://doi.org/10.1016/j.chemgeo.2008.10.032
Sanyal A, Bijma J, Spero H and Lea DW. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography 2001; 16(5): 515-519. https://doi.org/10.1029/2000PA000547
Naidu PD and Malmgren BA. Relationship between late Quaternary upwelling history and coiling properties of Neogloboquadrina pachyderma and Globigerina bulloides in the Arabian Sea. J Foram Res 1996; 26(1): 64-70. https://doi.org/10.2113/gsjfr.26.1.64
Khare N and Chaturvedi SK. Size variations of planktonic foraminiferal population in Indian Ocean sector of Southern Ocean. Ind J Mar Sci 2006; 35(3): 221-226.
Be' AWH and Tolderlund DS. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Ocean. In: Funnel BM, Riedel WR. Eds. The Micropaleontology of Oceans 1971; pp.105-149.
Honisch B and Hemming NG. Ground-truthing the boron isotope paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects. Paleoceanography 2004; 19. https://doi.org/10.1029/2004PA001026
Honisch B, Hemming NG, Honisch B and Hemming NG. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet Sci Lett 2005; 236: 305-314. https://doi.org/10.1016/j.epsl.2005.04.027
Charles CD and Fairbanks RG. Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface waters. In: Bleil U, Theide J, Eds. Geological History of the Polar Oceans: Arctic verses Antarctic. Kluwer Acad., Norwell, Mass 1990; pp. 519-538. https://doi.org/10.1007/978-94-009-2029-3_30
Broecker WS and Maier-Reimer E. The influence of air and sea exchange on the carbon isotope distribution in the air. Global Biogeochem Cycles 1992; 6: 315-20. https://doi.org/10.1029/92GB01672
Lynch-Stieglitz JT, Stocker F, Broecker S and Fairbanks RG. The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochem Cycles 1995; 9: 653-665. https://doi.org/10.1029/95GB02574
McCorkle DCP, Martin A, Lea DW and Klinkhammer GP. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: 13C, Cd/Ca, Ba/Ca and Sr/Ca results from the Ontong Java Plateau. Paleoceanography 1995; 10: 699-714. https://doi.org/10.1029/95PA01427
Matsumoto K and Lynch-Stieglitz J. Similar glacial and Holocene deep water circulation inferred from southeast Pacific benthic foraminiferal carbon isotope composition. Paleoceanography 1999; 14(2): 149-163. https://doi.org/10.1029/1998PA900028
Venn C, et al. Temperature, pH and carbon dioxide saturation: A laboratory Exercise (Poster). 36th Annual Meeting (March 12-14, 2001) at Sheraton Burlington, Lake Champian Exhibition Hall.
Lea DW, Bijma J, Spero HJ and Archer D. Implications of a carbonation effect on shell carbon and oxygen isotopes for glacial ocean conditions. In: Fischer G, Wefer G, Eds. Use of Proxies in Paleoceanography Examples from the South Atlantic. Springer, Berlin: Heidelberg 1999; 513-522.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2017 N. Khare