Abstract
Oscillating heat pipes (OHP) have highly efficient heat transfer capability. Some researchers have applied OHPs to cutting tools and rotating machines by embedding tubular OHPs in machines or by making flow channels on metal plates. Most studies are on heat transfer performance, and there are few studies on the heat transfer behavior of radial-rotating oscillating heat pipes (RR-OHP) under operating conditions. This paper conducted the visualization test of an RR-OHP filled with methanol by studying the flow patterns and motion modes at rotation speed (0-860 rpm) and heat flux (20000-40000 W/m2). When the heat flux is increased from 20000 W/m2 to 40000 W/m2, the flow patterns include flowless, slug flow, annular flow, and churn flow, and the motion modes contain oscillatory motion, cyclic motion, unilateral boiling, and bilateral boiling. The distribution map of the flow patterns and motion modes with the centrifugal acceleration and the heat flux was plotted, which shows the evolution of the flow patterns and the transformation of the motion modes of the RR-OHP, and elucidates the effect of the centrifugal acceleration and the heat flux on the flow patterns and motion modes.
References
Sathe TM, Wankhede US. Review on closed loop oscillating heat pipe. Int J Eng Res Technol. 2014; 3: 1195-201.
Han X, Wang X, Zheng H, Xu X, Chen G. Review of the development of pulsating heat pipe for heat dissipation. Renew Sustain Energy Rev. 2016; 59: 692-709. https://doi.org/10.1016/j.rser.2015.12.350
Ma HB, Borgmeyer B, Cheng P, Zhang Y. Heat transport capability in an oscillating heat pipe. J Heat Transfer. 2008; 130(8): 081501. https://doi.org/10.1115/1.2909081
Ma H. Oscillating heat pipes. New York, NY: Springer New York; 2015. https://doi.org/10.1007/978-1-4939-2504-9
Liu X, Han X, Wang Z, Hao G, Zhang Z, Chen Y. Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery. Energy Convers Manag. 2020; 205: 112404. https://doi.org/10.1016/j.enconman.2019.112404
Qu J, Guan F, Lv Y, Wang Y. Experimental study on the heat transport capability of micro-grooved oscillating heat pipe. Case Stud Therm Eng. 2021; 26: 101210. https://doi.org/10.1016/j.csite.2021.101210
Im YH, Lee JY, Ahn TI, Youn YJ. Operational characteristics of oscillating heat pipe charged with R-134a for heat recovery at low temperature. Int J Heat Mass Transf. 2022; 196: 123231. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123231
Liu X, Chen X, Zhang Z, Chen Y. Thermal performance of a novel dual-serpentine-channel flat-plate oscillating heat pipe used for multiple heat sources and sinks. Int J Heat Mass Transf. 2020; 161: 120293. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120293
Lin Z, Wang S, Huo J, Hu Y, Chen J, Zhang W, et al. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl Therm Eng. 2011; 31: 2221-9. https://doi.org/10.1016/j.applthermaleng.2011.03.003
Wu Z, Xing Y, Liu L, Huang P, Zhao G. Design, fabrication and performance evaluation of pulsating heat pipe assisted tool holder. J Manuf Process. 2020; 50: 224-33. https://doi.org/10.1016/j.jmapro.2019.12.054
Wu Z, Deng J, Su C, Luo C, Xia D. Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process. Int J Refract Metals Hard Mater. 2014; 45: 238-48. https://doi.org/10.1016/j.ijrmhm.2014.02.004
Wu Z, Bao H, Xing Y, Liu L. Dry cutting performance and heat transfer simulation of pulsating heat pipe self-cooling tool holder. J Manuf Process. 2022; 83: 129-42. https://doi.org/10.1016/j.jmapro.2022.08.055
Ji Y, Ma H, Su F, Wang G. Particle size effect on heat transfer performance in an oscillating heat pipe. Exp Therm Fluid. 2011; 35: 724-7. https://doi.org/10.1016/j.expthermflusci.2011.01.007
Ma HB, Wilson C, Yu Q, Park K, Choi US, Tirumala M. An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe. J Heat Transfer. 2006; 128: 1213-6. https://doi.org/10.1115/1.2352789
Hao T, Ma X, Lan Z, Li N, Zhao Y, Ma H. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe. Int J Heat Mass Transf. 2014; 72: 50–65. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.007
Jung C, Kim SJ. Effects of oscillation amplitudes on heat transfer mechanisms of pulsating heat pipes. Int J Heat Mass Transf. 2021; 165: 120642. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120642
Jo J, Kim J, Kim SJ. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe. Energy Convers Manag. 2019; 181: 331–41. https://doi.org/10.1016/j.enconman.2018.12.027
Liu X, Chen Y. Fluid flow and heat transfer in flat-plate oscillating heat pipe. Energy Build. 2014; 75: 29-42. https://doi.org/10.1016/j.enbuild.2014.01.041
Nuntaphan A, Vithayasai S, Vorayos N, Vorayos N, Kiatsiriroat T. Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement. Int Commun Heat Mass Transfer. 2010; 37: 287–92. https://doi.org/10.1016/j.icheatmasstransfer.2009.11.006
Iwata N, Miyazaki Y, Yasuda S, Ogawa H. Thermal performance and flexibility evaluation of metallic micro oscillating heat pipe for thermal strap. Appl Therm Eng. 2021; 197: 117342. https://doi.org/10.1016/j.applthermaleng.2021.117342
Li Q-M, Zou J, Yang Z, Duan Y-Y, Wang B-X. Visualization of two-phase flows in nanofluid oscillating heat pipes. J Heat Transfer. 2011; 133: 11–5. https://doi.org/10.1115/1.4003043
Xu JL, Li YX, Wong TN. High speed flow visualization of a closed loop pulsating heat pipe. Int J Heat Mass Transf. 2005; 48: 3338-51. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.034
Su Z, Hu Y, Zheng S, Wu T, Liu K, Zhu M, et al. Recent advances in visualization of pulsating heat pipes: A review. Appl Therm Eng. 2023; 221: 119867. https://doi.org/10.1016/j.applthermaleng.2022.119867
Spinato G, Borhani N, d’Entremont BP, Thome JR. Time-strip visualization and thermo-hydrodynamics in a closed loop pulsating heat pipe. Appl Therm Eng. 2015; 78: 364-72. https://doi.org/10.1016/j.applthermaleng.2014.12.045
Yasuda Y, Nabeshima F, Horiuchi K, Nagai H. Visualization of the working fluid in a flat-plate pulsating heat pipe by neutron radiography. J Heat Mass Transf. 2022; 185: 122336. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122336
Zhang D, He Z, Guan J, Tang S, Shen C. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf. 2022; 183: 122100. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100
Senjaya R, Inoue T. Bubble generation in oscillating heat pipe. Appl Therm Eng. 2013; 60: 251-5. https://doi.org/10.1016/j.applthermaleng.2013.06.041
Schwarz F, Uddehal SR, Lodermeyer A, Bagheri EM, Forster-Heinlein B, Becker S. Interaction of flow pattern and heat transfer in oscillating heat pipes for hot spot applications. Appl Therm Eng. 2021; 196: 117334. https://doi.org/10.1016/j.applthermaleng.2021.117334
Adachi T, Chang X, Nagai H, Takahashi S. Numerical investigation on necessary condition for temperature oscillation in loop heat pipe. Int J Therm Sci. 2024; 196: 108704. https://doi.org/10.1016/j.ijthermalsci.2023.108704
Maghrabie HM, Olabi AG, Alami AH, Radi M Al, Zwayyed F, Salamah T, et al. Numerical simulation of heat pipes in different applications. Int J Thermofluids. 2022; 16: 100199. https://doi.org/10.1016/j.ijft.2022.100199
Daimaru T, Nagai H, Ando M, Tanaka K, Okamoto A, Sugita H. Comparison between numerical simulation and on-orbit experiment of oscillating heat pipes. Int J Heat Mass Transf. 2017; 109: 791-806. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.078
Zhao J, Wu C, Rao Z. Numerical study on heat transfer enhancement of closed loop oscillating heat pipe through active incentive method. Int Commun Heat Mass Transfer. 2020; 115: 104612. https://doi.org/10.1016/j.icheatmasstransfer.2020.104612
Vo D-T, Kim H-T, Ko J, Bang K-H. An experiment and three-dimensional numerical simulation of pulsating heat pipes. Int J Heat Mass Transf. 2020; 150: 119317. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119317
Daimaru T, Yoshida S, Nagai H. Study on thermal cycle in oscillating heat pipes by numerical analysis. Appl Therm Eng. 2017; 113: 1219-27. https://doi.org/10.1016/j.applthermaleng.2016.11.114
On-ai K, Kammuang-lue N, Terdtoon P, Sakulchangsatjatai P. Implied physical phenomena of rotating closed-loop pulsating heat pipe from working fluid temperature. Appl Therm Eng. 2019; 148: 1303-9. https://doi.org/10.1016/j.applthermaleng.2018.11.030
Qian N, Jiang F, Marengo M, Chen J, Fu Y, Zhang J, et al. Start-up behavior of oscillating heat pipe in grinding wheel under axial-rotation conditions. Appl Therm Eng. 2023; 219: 119443. https://doi.org/10.1016/j.applthermaleng.2022.119443
Qian N, Fu Y, Zhang Y, Chen J, Xu J. Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel. Int J Heat Mass Transf. 2019; 136: 911-23. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.065
Czajkowski C, Nowak AI, Ochman A, Pietrowicz S. Flower shaped oscillating heat pipe at the thermosyphon condition: Performance at different rotational speeds, filling ratios, and heat supplies. Appl Therm Eng. 2022; 212: 118540. https://doi.org/10.1016/j.applthermaleng.2022.118540
Czajkowski C, Nowak AI, Pietrowicz S. Flower shape oscillating heat pipe – A novel type of oscillating heat pipe in a rotary system of coordinates – An experimental investigation. Appl Therm Eng. 2022; 179: 115702. https://doi.org/10.1016/j.applthermaleng.2020.115702
Qian N, Fu Y, Jiang F, Ding W, Zhang J, Xu J. CBN grain wear during eco-benign grinding of nickel-based superalloy with oscillating heat pipe abrasive wheel. Ceram Int. 2022; 48: 9692-701. https://doi.org/10.1016/j.ceramint.2021.12.170
Qian N, Fu Y, Chen J, Khan AM, Xu J. Axial rotating heat-pipe grinding wheel for eco–benign machining: A novel method for dry profile-grinding of Ti–6Al–4V alloy. J Manuf Process. 2020; 56: 216–27. https://doi.org/10.1016/j.jmapro.2020.03.023
Ebrahimi Dehshali M, Nazari MA, Shafii MB. Thermal performance of rotating closed-loop pulsating heat pipes: Experimental investigation and semi-empirical correlation. Int J Therm Sci. 2018; 123: 14-26. https://doi.org/10.1016/j.ijthermalsci.2017.09.009
Czajkowski C, Błasiak P, Rak J, Pietrowicz S. The development and thermal analysis of a U-shaped pulsating tube operating in a rotating system of coordinates. Int J Therm Sci. 2018; 132: 645-62. https://doi.org/10.1016/j.ijthermalsci.2018.07.002
Aboutalebi M, Nikravan Moghaddam AM, Mohammadi N, Shafii MB. Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int J Heat Mass Transf. 2013; 45: 137-45. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.008
Kammuang-lue N, Patanathabutr C, Sakulchangsatjatai P, Terdtoon P. Thermal characteristics of rotating closed-loop pulsating heat pipe designed for rotating-type energy storage devices. Energy Rep. 2022; 8: 302-8. https://doi.org/10.1016/j.egyr.2022.10.206
Liou T-M, Chang SW, Cai WL, Lan I-A. Thermal fluid characteristics of pulsating heat pipe in radially rotating thin pad. Int J Heat Mass Transf. 2019; 131: 273-90. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.132
Jang DS, Cho W, Ham SH, Kim Y. Thermal spreading characteristics of novel radial pulsating heat pipes with diverging nonuniform channels. Int J Heat Mass Transf. 2022; 199: 123488. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123488
Chen X, Liu X, Xu D, Chen Y. Thermal performance of a tandem-dual-channel flat-plate pulsating heat pipe applicable to hypergravity. Int J Heat Mass Transf. 2022; 189: 122656. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122656
Chen X, Chen S, Zhang Z, Sun D, Liu X. Heat transfer investigation of a flat-plate oscillating heat pipe with tandem dual channels under nonuniform heating. Int J Heat Mass Transf. 2021; 180: 121830. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121830
Qian N, Jiang F, Marengo M, Fu Y, Xu J. Thermal performance of a radial-rotating oscillating heat pipe and its application in grinding processes with enhanced heat transfer. Appl Therm Eng. 2023; 233: 121213. https://doi.org/10.1016/j.applthermaleng.2023.121213
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Jiaren Wang, Ning Qian, Yucan Fu