
International Journal of Petroleum Technology, 2024, 29-39 

 

 

 

 

 

 

 

 

 

 

 
 

Published by Avanti Publishers 
International Journal of Petroleum 

Technology 
ISSN (online): 2409-787X 

A Novel Technique in Determining Mud Cake Permeability in SiO2 

Nanoparticles and KCl Salt Water Based Drilling Fluid using Deep 

Learning Algorithm 

Muhammad A. Khan1,4, Faiq A. Abbasi2, Shaine M. Lalji2, Syed I. Ali2, Mei-Chun Li1,3,4.*, Mujtaba 

Mateen2 and Muhammad Mustafa2 

1School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China 
2Department of Petroleum Engineering, NED University of Engineering & Technology, Karachi, Pakistan 
3Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, 

Nanjing Forestry University, Nanjing, China 
4Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, 

Qingdao, Shandong, China 
 

 

ARTICLE INFO 

Article Type: Research Article 

Academic Editor: Adil Ozdemir  

Keywords:  

Mud cake permeability 

Deep learning algorithm 

ReLU activation function 

Multilayer Perceptron (MLP) 

Water-based drilling fluids (WBDFs) 

Timeline: 

Received: August 28, 2024 

Accepted: September 30, 2024 

Published: October 28, 2024 

Citation: Khan MA, Abbasi FA, Lalji SM, Ali SI, Li M-C, 

Mateen M, Mustafa M. A novel technique in determining 

mud cake permeability in SiO2 nanoparticles and KCl 

salt water based drilling fluid using deep learning 

algorithm. Int J Petrol Technol. 2024; 11: 29-39. 

DOI: https://doi.org/10.15377/2409-787X.2024.11.3 

 

 

ABSTRACT 

The permeability of the mud cake formed at the formation-wellbore interface is an important 

factor in the designing of water-based drilling fluids. This study presents a novel approach to 

utilizing experimental thixotropic and rheological parameters of polymeric water-based drilling 

fluids having varying concentrations of SiO2 nanoparticles and KCl salt. A fully connected feed-

forward multi-layered neural network, more commonly known as a Multilayer Perceptron (MLP) 

was developed to predict the mud cake permeability using input parameters such as SiO2 & KCl 

concentration, differential pressure, temperature, mud cake thickness, API LPLT and HPHT filter 

loss volume and spurt loss volume. The results suggested that the developed Multilayer Per- 

ceptron model effectively determined the mud cake permeability based on the input parameters 

of the WBDF mentioned above. The model converged on the global minima, minimizing the loss 

function using the Gradient descent algorithm. A higher Coefficient of Determination (R2) value 

i.e., 0.8781, and a lesser Root Mean Square Error (RMSE) value i.e., 0.04378 indicates the higher 

accuracy of the model. Pearson’s Coefficient of Correlation obtained via the heatmap indicates 

that mud cake permeability is strongly influenced by the differential pressure followed by filter 

loss volume, spurt loss volume, mud cake thickness, and temperature. Previous similar studies 

have focused on using machine learning algorithms, this study utilized a robust deep learning 

algorithm i.e., Multilayer Perceptron (MLP) neural network to simultaneously model the combined 

effects of SiO2 nanoparticles and KCl salt concentrations on mud cake permeability, offering an 

unprecedented level of accuracy in predicting key WBDF performance parameters. 
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1. Introduction 

Drilling fluids play a critical role during drilling operations [1, 2]. The main purpose of the drilling fluid is to 

clean the wellbore by removing the drill cuttings and allowing them to remain suspended in the wellbore, through 

which they can be transported to the surface [3-7]. Furthermore, drilling fluids also maintain the hydrostatic head 

in the wellbore which stabilizes the hole and prevents it from collapsing [3-6]. Drilling fluids also play a key role 

during logging as they provide a medium for the logging tool to send and receive signals [3-6]. Drilling fluids can 

be classified into oil-based fluids, water-based fluids, and synthetic-based fluids [8-11]. Water-based drilling fluids 

(WBDFs) are widely used during drilling operations, due to their environmentally friendly properties, reduced costs, 

and ease of handling [1, 2, 12, 13]. 

However, there are several problems associated with using water based drilling fluids, among which is the loss 

of fluid in the formations [14, 15]. This phenomenon occurs when the drilling fluid encounters a permeable 

formation, and the liquid phase (filtrate) enters the permeable region. Several different chemicals are added to the 

drilling fluid as an additive to minimize the fluid loss [16]. These additives allow the formation of a mud cake 

across the wall of the borehole interface that prevents further fluid loss [17, 18]. A mud cake must be 

homogeneous, thin, and poorly permeable if it is well-designed [14, 15]. The quality of the mud cake that forms at 

the interface between the wellbore and the geological formation determines the efficacy and efficiency of these 

drilling fluids in addition to their chemical makeup [19-21]. The purpose of this mud cake is to act as an 

impermeable, ideally thin barrier that stops drilling fluid from being lost further into the geological formation. 

Significant ramifications from such losses may include higher hydrostatic head and operating difficulties. Many 

problems encountered in drilling result from improper design of the drilling fluid, requiring special attention and 

good fluid design to minimize or correct the problems A thick filter cake causes problems such as a reduction in 

the effective diameter of the borehole, which then creates a possible risk of differential sticking of the pipe; in 

addition, a highly permeable filter cake increases both the filtering capacity and the fluid loss into the formation 

[22, 23]. Current practices indicate that it is impossible to reduce fluid loss with micro- or macro-type fluid 

supplements [24-26]. Several studies have recently experimentally investigated the measurement and 

minimization of static and dynamic filtration volume of drilling fluids [27-31]. With the advent of nanotechnology, 

it was discovered that nanoparticles have the potential to solve or mitigate the problem of fluid loss while 

maintaining optimal rheological properties. Aqueous drilling fluids contain many components, such as salt, which 

control the expansion of clay and shale [32]. KCl is the most commonly used salt in polymeric water-based drilling 

fluids [33]. Nanoparticles are significantly affected by the presence of salts in the liquid efficiency and properties 

such as surface charges that cause nanoparticle agglomeration [34, 35].  

Many researchers have studied the effects of various nanoparticles, such as silica nanoparticles, on drilling 

fluid properties and filtration rate to date. Recent studies include Parizad et al., [32] which investigated the effects 

of SiO2 nanoparticles and KCl salt on different aspects of polymer water-based drilling, including fluid filtration 

with nanoparticle concentrations of 0-7.5 gr/L, temperatures of 25-93 °C, and pressures of 0.69 and 2.76 MPa. 

They concluded that SiO2 nanoparticles reduce the filtration volume by reducing the permeability of mud cakes at 

different temperatures. Salih et al., [36] investigated the effects of incredibly low concentrations of different metal 

oxide nanoparticles, such as silica nanoparticles, on a range of parameters, such as the filtration qualities of a high 

pH water-based mud and its flocculation qualities. The studies were conducted in accordance with API testing 

guidelines, with low-pressure and low-temperature settings. The results showed that the presence of silica 

nanoparticles at concentrations of 0.1% by weight or less resulted in a decrease in the filtering volume, an 

improvement in the mud cake’s structure, and the total avoidance of filtrate loss. It's crucial to remember that 

raising the concentrations of silica nanoparticles over this point did not result in any appreciable benefits [36]. A 

different study carried out by Salih et al., [37] sought to ascertain the ideal concentration of silica nanoparticles to 

improve water-based drilling fluids, with a particular emphasis on lowering filtering loss. Low temperatures and 

low pressure were used for these tests. The results showed that when the concentration of nanoparticles was less 

than 0.7% by weight, the filtration characteristics of the drilling fluid improved. It was discovered that the range of 

concentrations where silica nanoparticles worked best was between 0.1% and 0.3% by weight [37]. 

To solve non-linear regression problems, artificial intelligence techniques such as artificial neural networks and 

adaptive neuro-fuzzy systems have been used more recently. These tools are widely used in many other areas and 
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industries, and the petroleum industry has seen an increasing usage of machine learning methods to solve 

complex field problems [38-42]. In this study, a widely used Feedforward Back Propagation deep learning 

algorithm, known as Multilayered Perceptron, has been utilized to predict the mud cake permeability using 

thixotropic and rheological properties as input parameters. 

2. Methodology  

2.1. Data Collection 

The dataset used in this study was obtained from published literature [32], comprising of experimentally 

determined thixotropic and rheological parameters of 37 samples of polymeric water-base drilling fluid. These 

parameters included SiO2 nanoparticle & KCl salt concentration, differential pressure, temperature, mud cake 

thickness, funnel viscosity, API LPLT and HPHT Filter Loss volume and Spurt Loss volume. Since these parameters 

were determined experimentally therefore the concentrations of other additives such as Xanthum Gum (XG), 

Partially Hydrolyzed Polyacrylamide (PHPA), Carboxy Methyl Cellulose – Low Viscosity (CMC-LV) were set as control 

i.e., their concentrations remained constant in all the 37 samples at 4 gr/L ,1 gr/L ,4.5gr/L respectively. In the 

original study [32] SiO2 nanoparticles were dispersed using a UIP500hd ultrasonic device, and filtration tests (API 

LPLT and HPHT) were conducted using Whatman 50 filter paper [32]. API tests were performed at 100 psig and 

room temperature (25°C), while HPHT tests were done at 400 psig under various temperatures [32]. 

Table 1 shows the complete statistics of the dataset, while Fig. (1) shows the frequency and distribution of the 

dataset. The dataset was randomly divided into training and testing sets to train the Multi-layered Perceptron 

(MLP) Network. The optimum train-test split was found to be 80%-20%, hence 29 and 8 datapoints were used to 

train and test the accuracy of the Deep learning model respectively.  

 

 

 

Figure 1: Distribution and frequency of the dataset. 
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Table 1: Statistics of the dataset. 

Index 
SiO2 Conc.  

gr/L 

KCl Conc.  

gr/L 

Differential  

Pressure MPa 

Temp. 

°C 

Filter Loss  

Volume, cm3 

Mud Cake  

Thickness, mm 
Time min 

Spurt Vol.  

cm3 

Mud Cake 

Permeability, nm2 

Count 37.00 37.00 37.00 37.00 37.00 37.00 37.00 37.00 37.00 

Mean 2.85 43.78 2.26 49.38 17.15 0.66 30.00 0.99 0.23 

Standard 

Deviation 
2.57 23.73 0.90 28.50 5.12 0.18 0.00 0.57 0.16 

Minimum 0.00 10.00 0.69 25.00 10.1 0.36 30.00 0.15 0.11 

25% 1.00 10.00 2.76 25.00 13.7 0.51 30.00 0.47 0.14 

50% 2.50 60.00 2.76 43.00 16.4 0.6 30.00 0.95 0.16 

75% 5.00 60.00 2.76 65.00 20.7 0.85 30.00 1.4 0.19 

Maximum 7.50 60.00 2.76 93.00 30.2 1.03 30.00 2.03 0.64 

 

2.2. Development of the Multilayered Perceptron Network 

The history of Artificial Neural Networks (ANNs) can be traced back to 1943 when a fundamental neural 

network model was developed [43]. In 1949, Hebb introduced the concept of neural network learning rules; which 

allowed the use of ANNs to widely increase across various sectors [44]. ANNs are capable of recognizing and 

understanding both linear and non-linear correlations between input and output variables in a given dataset. The 

fundamental goal of a neural network is establishing a mapping between a group of input patterns and related 

output patterns [45, 46]. Artificial neural networks (ANNs) have the unique capacity to solve complicated issues 

that are impossible to formulate using traditional mathematical procedures [47]. Different kinds of neural 

networks can be built by adjusting the placement of neurons and the patterns of connections between them 

within layers. Multi-layer perceptron (MLP) and Radial Basis Function (RBF) networks are two examples of popular 

and adaptable neural network architectures that are often used in scenarios involving problem-solving [48-50]. 

A Multilayered Perceptron (MLP) Network is a combination of three individual layers which are known as the 

input layer, the hidden layer, and the output layer. These networks are essentially made up of neurons, each of 

which has a bias, is connected by links, and has a particular weight given to each link [51]. Training algorithms 

support the learning process, which is driven by input and target datasets. The following two equations can be 

used to officially describe a neuron, represented by the symbol k, in mathematics [51]: 

𝑦𝑘 = 𝑓( 𝑢𝑘 +  𝑏𝑘) Eq. 1 

𝑢𝑘 =  ∑ 𝑤𝑘𝑖𝑥𝑖

𝑁

𝑖=1

 Eq. 2 

Here the input signals are represented by 𝑥1, 𝑥2, 𝑥3 … … … 𝑥𝑛 the connection weights assigned to the neurons are 

represented by 𝑤𝑘1, 𝑤𝑘2, 𝑤𝑘3 … … … 𝑤𝑘𝑛. Using a weighted summation of the input signals, the network initially 

calculates the linear output (𝑢𝑘), in which the bias term (𝑏𝑘) is also involved. After that, the activation function 𝑓 is 

used to obtain the output signal 𝑦𝑘  [51].  

The backpropagation (BP) technique, which applies a learning process based on an error correction 

mechanism, is used to train MLP-NNs. To produce its output, this network processes input data. The algorithm 

determines the error by comparing the output of the network with the desired values. The training procedure is 

then repeated until the network achieves a predetermined acceptable level of error, during which repeatedly 

modifies the weights and biases to reduce this error [51].  

Artificial Neural Networks (ANNs) and Multilayered Perceptron (MLPs) are widely used in the oil and gas 

industry due to their efficiency and accuracy in mapping complex relationships between multiple parameters. One 
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of their application is reservoir characterization particularly the determination of saturation pressure [52], utilizing 

well-log data to predict parameters like porosity, permeability, lithology, and sand thickness [53], determining 

minimum miscibility pressure in CO2 injection and, asphaltene adsorption and stability [54, 55]. Similarly, Fath et al. 

2018, applied both Radial Basis Functions (RBF) and Multilayered Perceptron (MLP) to determine the solution gas-

oil ratio of crude oil [51]. Another study by Vaferi et al., explored the use of MLPs on well-test data and developed 

a system to accurately classify the reservoir model based on the input parameters [56]. 

The proposed MLP network model in this study was developed using Python programming language. This 

developed model was used to determine the mud cake permeability using 8 inputs. A random division of the 

dataset was done, and two subsets were formed i.e., training and testing sets. The number of neurons in the 

hidden layer of a multilayered perceptron (MLP) model determines its size and prediction power. Choosing the 

right number of neurons for the best network architecture usually requires a trial and-error-based approach. A 

variety of unique network topologies with varying numbers of neurons were assessed to tackle this problem. In 

these analyses, the loss function was the mean squared error or MSE. The optimized network architecture was 

ultimately determined by minimizing the inaccuracy present in the test data. To lessen the possible impact of 

random correlations resulting from the first random weight initialization, this procedure was carried out several 

times. After several trials, it was observed that the model performed optimally with three hidden layers, having 

1000, 100, and 10 neurons respectively. The ReLU activation function was used for the hidden layers of the MLP 

network and the regularization parameter (λ) was set to 0.001. The parameters of the MLP model are given in 

Table 2. 

Table 2: Different parameters of the MLP model. 

Parameter Value 

Optimizer Adam 

Loss function MSE 

Number of hidden layers 3 

Number of neurons in the hidden layer 1000,100,10 

 

2.3. Model Evaluation 

In this study, widely used measures for assessing accuracy in regression problems were used to evaluate the 

performance of theMultilayered Perceptron (MLP) model. The rootmean square error (RMSE), mean absolute 

error (MAE), mean squared error (MAE), and coefficient of determination (R2) are some examples of these 

measurements. As an additional technique to assess the model validation, a cross-plot was used to compare the 

projected values against the actual data. 

3. Results and Discussion 

Cross-plots were constructed between actual mud cake permeability and MLP-predicted mud cake 

permeability for training and testing datasets (Fig. 2-3). An analysis of the cross plots reveals that a good 

correlation exists between actual and MLP-predicted mud cake permeability, as the majority of the values lie in the 

line of best fit. Since the predicted values are closer to the laboratory-determined permeability values hence it can 

be inferred that the model performed efficiently and accurately. 

The evaluation of the developed Multilayer Perceptron (MLP) model in this study involved the application of 

classical statistical techniques to assess its efficiency in estimating mud cake permeability within SiO2 salt and KCl 

salt-added water-based drilling mud systems. The obtained results reveal the model's exceptional accuracy and 

reliability. The coefficient of determination (R2) serves as a key metric in assessing how the model fits the actual 

data. Particularly, the R2 value of 0.9982 for the training dataset and 0.8781 for the testing dataset indicates a  
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Figure 2: Actual vs predicted mud cake permeability for MLP on train data. 

 

Figure 3: Actual vs predicted mud cake permeability for MLP on test data. 
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high-degree correlation between the predicted and observed values. The close alignment of the model's 

predictions with the actual data highlights its capability to capture the underlying patterns in the mud cake 

permeability. Furthermore, the model's performance is validated through the evaluation of Root Mean Squared 

Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). Lower values for these metrics suggest 

reduced errors in predicting the mud cake permeability, which is the target parameter in this case. The obtained 

values of 0.04378 for RMSE, 0.001917 for MSE, and 0.03256 for MAE demonstrate the model's accuracy in 

minimizing the discrepancies between predicted and actual permeability values. The high R2 values and low error 

metrics collectively indicate the robustness of the MLP model in providing accurate estimations of mud cake 

permeability in SiO2 salt and KCl salt-added water-based drilling mud systems. These findings not only validate the 

efficacy of the developed model but also underscore its potential for practical applications in predicting mud cake 

permeability in diverse drilling scenarios, contributing to enhanced efficiency and precision in wellbore operations. 

 

Figure 4: Correlation heatmap of feature pairs. 

The correlation heatmap presented in Fig. (4) offers valuable insights into the relationship between mud cake 

permeability and various input features in wellbore conditions. The heatmap reveals distinct patterns of 

correlation coefficients, indicating the strength and direction of these relationships. Notably, there is a robust 

positive correlation (0.96) between mud cake permeability and differential pressure, suggesting that higher 

differential pressures are associated with increased mud cake permeability.  
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In an ideal scenario differential pressure does not directly influence the filtration volume, but real case 

scenarios it does affect the filtration volume, which indirectly influences the mud cake permeability . The impact of 

differential pressure on mud cake formation is influenced by the size and shape of the solid particles within the 

mud cake. Larger particle sizes and particle agglomeration result in increased filtration volumes under higher 

differential pressure conditions [14]. Similarly, the spurt volume exhibits a strong positive correlation (0.67), 

indicating a tendency for higher spurt volumes to coincide with elevated mud cake permeability. Spurt loss 

impacts mud cake permeability by influencing the initial volume of filtrate during fluid invasion before the filter 

cake forms [15]. A wider particle size distribution leads to lower permeability, as smaller particles fill voids 

between larger ones, creating a denser structure [15]. This denser packing reduces fluid flow through the mud 

cake. Additionally, a broader size distribution enhances the bridging mechanism, allowing for quicker mud cake 

formation and reduced spurt loss [15]. Consequently, lower spurt loss indicates a more effective filtration process, 

maintaining mud cake integrity and minimizing permeability [15]. 

Additionally, moderate positive correlations (0.54) are observed for funnel viscosity, mud cake thickness, and 

reservoir temperature. This suggests that these factors are moderately associated with mud cake permeability 

variations. High temperatures slightly increase the mud permeability since it leads to disruption of colloidal 

stability [32]. As temperature rises, the kinetic energy of particles in the drilling fluid increases, altering their 

interactions with the liquid phase [32]. This can lead to the breakdown of particle agglomerates and enhance the 

fluid's flow characteristics [32]. 

On the other hand, the concentration of KCl salt and nanoparticles demonstrates little impact on mud cake 

permeability, as reflected by lower or negligible correlation coefficients for these parameters.  

4. Conclusion 

This study highlights the novel application of a Multilayer Perceptron (MLP) neural network to predict mud cake 

permeability, a key factor in optimizing the performance of water-based drilling fluids (WBDFs) used in the oil and 

gas sector. Mud cake permeability is crucial for drilling efficiency, wellbore stability, and fluid control. It also offers 

insights into reservoir properties like porosity, aiding in reservoir evaluation and subsurface resource 

management in oil and gas operations. By incorporating thixotropic and rheological input parameters such as SiO2 

nanoparticles and KCl salt concentrations, the model provided a high level of accuracy, demonstrated by strong 

statistical metrics (R² = 0.8781, RMSE = 0.04378). The MLP model effectively captured the complex relationships 

between permeability and various drilling fluid properties, such as differential pressure, temperature, and filter 

loss volumes. The novel approach of integrating SiO2 nanoparticles and KCl as key input parameters with a deep 

learning algorithm offers a more precise prediction tool, enhancing the ability to design efficient drilling fluids and 

improve wellbore stability. Future work could extend this model by utilizing a larger, more comprehensive dataset 

to develop a generalized model for broader applications in WBDF systems. This research offers significant 

potential for improving drilling efficiency and reservoir characterization, contributing to more efficient subsurface 

resource management. 
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