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ABSTRACT 

In this work, we examine the inverse problem to reconstruct the inner boundary 

of a cylindrical doubly-connected infinitely long medium from measurements of 

the scattered electromagnetic wave in the far-field. We consider the integral 

representation of the solution to derive a non-linear system of equations for the 

unknown radial function. We propose an iterative scheme using linearization and 

regularization techniques. 
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1. Introduction 

Inverse scattering problems are a class of applied mathematical problems that arise in various fields, such as 

medical imaging, radar technology, and non-destructive testing. These problems involve the reconstruction of an 

unknown scatterer (its geometry and/or material properties) from the measurements of the scattered waves close 

or far from the medium. We refer to the textbooks [1-3] for the fundamentals and an extensive overview. 

In the special case of obliquely incident scattering problems, where the incident wave is not normal 

(perpendicular) to the scatterer or the boundary, additional complexity is introduced. The scattering events 

depend on the incident angle and thus such problems pose additional theoretical and numerical challenges 

compared to normal incidence. The analysis of these problems often involves advanced mathematical and 

computational approaches to account for the increased complexity, see for example the early works [4, 5]. 

However, if we specify the scatterer to be infinitely long and spatial-independent in one direction then the 

three-dimensional problem reduces to a set of two-dimensional problems and the complexity has to do only with 

the boundary conditions where the tangential derivative of the fields appear. Motivated by the works of 

Nakamura and Wang, see for example [6, 7], we examined scattering problems for penetrable simply- and doubly-

connected scatterers [8, 9]. 

In this work, we are interested in solving numerically the inverse problem to reconstruct the inner boundary 

curve of a doubly connected penetrable infinitely long cylinder with impedance-type conditions in its inner 

boundary. The well-posedness of the corresponding direct problem was proven by the author in [10]. 

We formulate the inverse problem as a system of singular boundary integral equations to be solved for the 

unknown density functions, see the initial work of Kress and Rundell [11]. The radial function appears non-linearly 

and we apply the Fréchet derivative on the integral operator. The ill-posedness is treated with Tikhonov 

regularization. 

The paper is organized as follows: In sec_direct we formulate the direct problem and we present the necessary 

differential equations, boundary, and radiation conditions. The inverse problem and the equivalent system of 

integral equations are stated in sec_inverse where we propose also the numerical iterative scheme for its solution. 

In the last section, we present the numerical implementation and numerical examples justifying the applicability 

of the proposed method. 

2. Problem Formulation 

In [10] the author considered the direct scattering problem of a time-harmonic electromagnetic wave by an 

infinitely long, penetrable, and doubly-connected cylinder. The initial problem is stated in 3D but the properties of 

the medium allow for an equivalent formulation in 2D for the cross-section of the scatterer. The medium is 

bounded by two disjoint smooth boundaries. We impose transmission conditions on the exterior and Leontovich 

impedance conditions on the inner boundary. 

Let 𝛺1 denote the horizontal cross-section of the cylindrical scatterer, with a smooth boundary 𝛤, consisting of 

two disjoint closed curves 𝛤1 (inner) and 𝛤0 (outer) such that 𝛤 = 𝛤1 ∪ 𝛤0. The exterior domain is denoted by 𝛺0. 

We define the wave-number 𝜅𝑗
2 = 𝜇𝑗𝜀𝑗𝜔

2 − 𝛽2, for 𝑗 = 0,1 where 𝜇𝑗 and 𝜀𝑗 are the material parameters and 𝛽 =

𝑘0 𝑐𝑜𝑠 𝜃, where 𝑘0 = 𝜔√𝜇0𝜀0, for the frequency 𝜔 and 𝜃 ∈ (0, 𝜋) is the incident angle concerning the negative 

𝑧 −axis. 

Following [6–8,10], the direct problem is governed by the Helmholtz equations  

𝛥𝑒𝑒𝑥𝑡 + 𝜅0
2𝑒𝑒𝑥𝑡 = 0, 𝛥ℎ𝑒𝑥𝑡 + 𝜅0

2ℎ𝑒𝑥𝑡 = 0, 𝑖𝑛 𝛺0,

𝛥𝑒1 + 𝜅1
2𝑒1 = 0, 𝛥ℎ1 + 𝜅1

2ℎ1 = 0, 𝑖𝑛 𝛺1,
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for the exterior 𝑒𝑒𝑥𝑡 , ℎ𝑒𝑥𝑡 and the interior 𝑒1, ℎ1 electric and magnetic fields, respectively. The boundary conditions 

read  

 𝑒1 − 𝑒𝑒𝑥𝑡 = 0, 𝑜𝑛 𝛤0, 

 �̃�1𝜔
𝜕ℎ1

𝜕𝑛
+ 𝛽1

𝜕𝑒1

𝜕𝜏
− �̃�0𝜔

𝜕ℎ𝑒𝑥𝑡

𝜕𝑛
− 𝛽0

𝜕𝑒𝑒𝑥𝑡

𝜕𝜏
 = 0, 𝑜𝑛 𝛤0, 

 ℎ1 − ℎ𝑒𝑥𝑡  = 0, 𝑜𝑛 𝛤0, 

 𝜀1̃𝜔
𝜕𝑒1

𝜕𝑛
− 𝛽1

𝜕ℎ1

𝜕𝜏
− 𝜀0̃𝜔

𝜕𝑒𝑒𝑥𝑡

𝜕𝑛
+ 𝛽0

𝜕ℎ𝑒𝑥𝑡

𝜕𝜏
 = 0, 𝑜𝑛 𝛤0, 

 �̃�1𝜔
𝜕ℎ1

𝜕𝑛
+ 𝛽1

𝜕𝑒1

𝜕𝜏
+ 𝜆𝑖ℎ1 = 0, 𝑜𝑛 𝛤1, 

 𝜆𝜀1̃𝜔
𝜕𝑒1

𝜕𝑛
− 𝜆𝛽1

𝜕ℎ1

𝜕𝜏
+ 𝑖𝑒1 = 0, 𝑜𝑛 𝛤1, 

where appear both the normal and tangential derivatives of the fields. The impedance function 𝜆 is known. Here, 

we used  

�̃�𝑗 =
𝜇𝑗

𝜅𝑗
2 ,  𝜀�̃� =

𝜀𝑗

𝜅𝑗
2 ,  𝛽𝑗 =

𝛽

𝜅𝑗
2 ,  𝑓𝑜𝑟 𝑗 = 0,1. 

The exterior fields are written as the sum of the scattered 𝑒0, ℎ0 and incident fields 𝑒𝑖𝑛𝑐 , ℎ𝑖𝑛𝑐 , given by  

𝑒𝑖𝑛𝑐(𝒙) =
1

√𝜀0
𝑠𝑖𝑛 𝜃 𝑒𝑖𝜅0(𝑥 𝑐𝑜𝑠 𝜑+𝑦 𝑠𝑖𝑛𝜑),  ℎ𝑖𝑛𝑐(𝒙) = 0,  𝒙 = (𝑥, 𝑦), (1) 

where 𝜑 is the polar angle of the incident direction. The scattered wave satisfies also the Sommerfeld radiation 

condition. 

The direct problem admits a unique solution [10]. In this work, we are interested in solving numerically the 

inverse problem to reconstruct the boundary curve 𝛤1, given 𝜆 and the far-field pattern 𝑒∞(𝒙), ℎ∞(𝒙) of the 

scattered field, for all 𝒙 in the unit circle. 

3. The Inverse Problem 

Given the far-fields, we aim to reconstruct the inner boundary of the scatterer given its material parameters 

and the impedance function. To do so, we present the solution of the problem using its integral representation. 

Thus, we define the single- and double-layer potentials  

(𝑆 𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝛷𝑘(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛺𝑙 , 

(𝐷 𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝜕𝛷𝑘

𝜕𝑛(𝒚)
(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛺𝑙 , 

for 𝑘, 𝑙, 𝑗 = 0,1, where 𝛷𝑘 is the fundamental solution of the Helmholtz equation in 𝑅2, and 𝑓 is a continuous density 

function. In addition, we define the integral operators  

(𝑆𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝛷𝑘(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛤𝑙 , 

(𝐷𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝜕𝛷𝑘

𝜕𝑛(𝒚)
(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛤𝑙 , 
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(𝑁𝑆𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝜕𝛷𝑘

𝜕𝑛(𝒙)
(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛤𝑙 , 

(𝑁𝐷𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝜕2𝛷𝑘

𝜕𝑛(𝒙)𝜕𝑛(𝒚)
(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛤𝑙 , 

(𝑇𝑆𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝜕𝛷𝑘

𝜕𝜏(𝒙)
(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛤𝑙 , 

(𝑇𝐷𝑘𝑙𝑗𝑓)(𝒙) = ∫𝛤𝑗
𝜕2𝛷𝑘

𝜕𝜏(𝒙)𝜕𝑛(𝒚)
(𝒙, 𝒚)𝑓(𝒚)𝑑𝑠(𝒚), 𝒙 ∈ 𝛤𝑙 , 

needed in the following analysis. 

We apply both the direct and indirect methods and we consider a single-layer ansatz for the interior fields and 

a modified Green representation for the exterior fields. The exterior fields are represented through a combination 

of potentials where we have specified the density functions to reduce the number of unknowns. 

We set  

𝑒1(𝒙) = ( 𝑆110𝜓1
𝑒)(𝒙) + ( 𝑆111𝜓2

𝑒)(𝒙),  𝒙 ∈ 𝛺1, 

(2) 

ℎ1(𝒙) = ( 𝑆110𝜓1
ℎ)(𝒙) + ( 𝑆111𝜓2

ℎ)(𝒙), 𝒙 ∈ 𝛺1, 

𝑒0(𝒙) = ( 𝐷000𝜑0
𝑒)(𝒙) +

𝜀1̃
𝜀0̃
( 𝑆000𝜓1

𝑒)(𝒙), 𝒙 ∈ 𝛺0,  

ℎ0(𝒙) = ( 𝐷000𝜑0
ℎ)(𝒙) +

�̃�1
�̃�0
( 𝑆000𝜓1

ℎ)(𝒙), 𝒙 ∈ 𝛺0. 

 

Then, using the standard jump relations, we find that the fields (2) solve the boundary value problem if the 

densities satisfy a well-posed Fredholm-type system of integral equations. We enlarge the system with the sum of 

the two far-field equations, given the specific form of the scattered fields. In the end, we obtain the system  

𝑨𝝋 = 𝒃, (3) 

where  

𝑨 =

(

 
 
 
 
 
 
 
 
 
 
 

1 + 𝐴11 0 0 𝐴14 0 𝐴16

0 1 + 𝐴22 𝐴23 𝐴24 𝐴25 𝐴26

0 𝐴32 1 + 𝐴33 0 𝐴35 0

𝐴41 𝐴42 0 1 + 𝐴44 𝐴45 𝐴46

0 𝐴52 0 𝐴54 1 + 𝐴55 𝐴56

0 𝐴62 0 𝐴64 𝐴65 1 + 𝐴66

𝐷∞
�̃�1
�̃�0
𝑆∞ 𝐷∞

𝜀1̃
𝜀0̃
𝑆∞ 0 0

)

 
 
 
 
 
 
 
 
 
 
 

, 

and 𝝋 = (𝜑0
𝑒 , 𝜓1

ℎ , 𝜑0
ℎ , 𝜓1

𝑒 , 𝜓2
ℎ , 𝜓2

𝑒)𝛵 for the right-hand side 𝒃 = (−2𝑒𝑖𝑛𝑐 , 0,0,
�̃�0

�̃�1
𝜕𝑛𝑒

𝑖𝑛𝑐 , 0,0, 𝑒∞ + ℎ∞)𝛵. The elements 

(integral operators) of the matrix are given by  
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𝐴11 = 𝐴33 = 2𝐷000, 𝐴16 = 𝐴35 = −2𝑆101, 

𝐴14 = −2(𝑆100 −
𝜀1̃
𝜀0̃
𝑆000), 

𝐴22 = 𝐴44 = 𝑁𝑆100 −𝑁𝑆000, 

𝐴23 
= −

�̃�0
�̃�1
𝑁𝐷000, 

𝐴24 =
𝛽1 − 𝛽0
�̃�1𝜔

𝑇𝑆100, 

𝐴25 = 𝐴46 = 𝑁𝑆101, 𝐴26 =
𝛽1 − 𝛽0
�̃�1𝜔

𝑇𝑆101, 

𝐴32 
= −2(𝑆100 −

�̃�1
�̃�0
𝑆000), 

𝐴41 
= −

𝜀0̃
𝜀1̃
𝑁𝐷000, 

𝐴42 
=
𝛽0 − 𝛽1
𝜀1̃𝜔

𝑇𝑆100, 
𝐴45 

=
𝛽0 − 𝛽1
𝜀1̃𝜔

𝑇𝑆101, 

𝐴52 
= −2𝑁𝑆110 −

2𝑖𝜆

�̃�1𝜔
𝑆110, 

𝐴54 
= −

2𝛽1
�̃�1𝜔

𝑇𝑆110, 

𝐴55 
= −2𝑁𝑆111 −

2𝑖𝜆

�̃�1𝜔
𝑆111, 

𝐴56 
= −

2𝛽1
�̃�1𝜔

𝑇𝑆111, 

𝐴62 
= −

2𝛽1
𝜀1̃𝜔

𝑇𝑆110, 
𝐴64 

= −2𝑁𝑆110 +
2𝑖

𝜆𝜀1̃𝜔
𝑆110, 

𝐴65 
=
2𝛽1
𝜀1̃𝜔

𝑇𝑆111, 
𝐴66 

= −2𝑁𝑆111 +
2𝑖

𝜆�̃�1𝜔
𝑆111. 

 

Here, 𝐷∞ and 𝑆∞ denote the far-field operators of 𝐷000 and 𝑆000, respectively, where we replace 𝛷0 with its far-

field approximation. 

The system (3) has to be solved for the six unknown density functions and the parametrization of the interior 

boundary curve. We propose to split it into two sub-systems and use the iterative scheme proposed in [12] and 

further applied successfully in many inverse problems, see for example [9, 13-15]. The difference here is that the 

far-field equation does not provide information on 𝛤1, so we have to consider this equation together with the 

boundary equations for recovering the density functions (ill-posed problem) and solve instead one boundary 

equation for the unknown boundary. 

Let us write (3) in a row-based form  

𝑨[𝑘]𝝋 = 𝒃[𝑘],  𝑓𝑜𝑟 𝑘 = 1,… ,7. 

The iterative scheme reads: Given an initial guess for the radial function, solve the sub-system of equations for 

𝑘 = 2,… ,7 for the six density functions. Then, replace the derived density functions and solve the linearized form 

of the equation 𝑨[1]𝝋 = 𝒃[1] to obtain the update for the boundary. We could choose any equation to be solved 

for the radial function but in the first or the third equation only one operator involving the radial function of the 

inner boundary, thus, it will be easier to linearize. 

We solve the linear system using Tikhonov regularization, meaning by minimizing the following functional  

‖(𝑨′1[1]𝝋)𝒒 − 𝒃[1] − 𝑨[1]𝜑‖2
2 + 𝜆‖𝒒‖2

2,  𝜆 > 0, 

where 𝑨′1[1] denotes the Fréchet derivative of the operator depending on 𝛤1 (specified in the next section) and 𝒒 

the radial function (to be reconstructed). The regularization parameter is decreasing at every iteration step. 

4. Numerical Examples 

We assume star-like boundary curves of the form  

𝛤𝑗 = 𝑟𝑗(𝑡)(𝑐𝑜𝑠 𝑡 , 𝑠𝑖𝑛 𝑡): 𝑡 ∈ [0,2𝜋],  𝑗 = 0,1, 

for a smooth radial function 𝑟𝑗 and we consider an equidistant grid discretization 𝑡𝑘 = 𝑘𝜋/𝑛, for 𝑘 = 0,… ,2𝑛 − 1. 
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The discretized form of the operators are analytically presented In [10] and they are omitted here for the sake 

of presentation. We apply quadrature rules to handle the singular kernels. We present only the single layer and its 

Fréchet derivative. 

We observe that only the operator 𝑆101 depends (non-linearly) on 𝛤1, and it is explicitly given by  

(𝑆101(𝑟1; 𝜙))(𝑡) = ∫
2𝜋

0

𝛷1(𝒚(𝑡), 𝒙(𝜏))𝜙(𝜏)|𝒙
′(𝜏)|𝑑𝜏 

 
=
𝑖

4
∫
2𝜋

0

𝐻0
(1)(𝜅1|𝒅(𝑡, 𝜏)|)𝜙(𝜏)|𝒙

′(𝜏)|𝑑𝜏, 

where 𝒅(𝑡, 𝜏) = 𝒚(𝑡) − 𝒙(𝜏), for 𝒚 ∈ 𝛤0 and 𝒙 ∈ 𝛤1 . 

We compute the Fréchet derivative by formally differentiating the kernel of the operator, resulting in  

((𝑆101
′ (𝑟1; 𝜙))(𝑞)) (𝑡) = ∫

2𝜋

0

𝑀(𝑡, 𝜏)𝜙(𝜏)𝑑𝜏, 

for the update 𝑞 of the radial function 𝑟1, with kernel  

𝑀(𝑡, 𝜏) =
𝑖𝜅1
4
𝐻1
(1)(𝜅1|𝒅(𝑡, 𝜏)|)

𝒅(𝑡, 𝜏) ⋅ 𝒒(𝜏)

|𝒅(𝑡, 𝜏)|
|𝒙′(𝜏)| +

𝑖

4
𝐻0
(1)(𝜅1|𝒅(𝑡, 𝜏)|)

𝒙′(𝜏) ⋅ 𝒒′(𝜏)

|𝒙′(𝜏)|
 

Since  

𝒒′(𝜏) = 𝑞′(𝜏)(𝑐𝑜𝑠 𝜏 , 𝑠𝑖𝑛 𝜏) + 𝑞(𝜏)(− 𝑠𝑖𝑛 𝜏 , 𝑐𝑜𝑠 𝜏), 

we decompose the kernel 𝑀, to the parts applied to 𝑞 and its derivative, as follows  

𝑀(𝑡, 𝜏) = (
𝑖𝜅1
4
𝐻1
(1)(𝜅1|𝒅(𝑡, 𝜏)|)

𝒅(𝑡, 𝜏) ⋅ (𝑐𝑜𝑠 𝜏 , 𝑠𝑖𝑛 𝜏)

|𝒅(𝑡, 𝜏)|
|𝒙′(𝜏)| 

 +
𝑖

4
𝐻0
(1)(𝜅1|𝒅(𝑡, 𝜏)|)

𝒙′(𝜏) ⋅ (− 𝑠𝑖𝑛 𝜏 , 𝑐𝑜𝑠 𝜏)

|𝒙′(𝜏)|
) 𝑞(𝜏) 

 +
𝑖

4
𝐻0
(1)(𝜅1|𝒅(𝑡, 𝜏)|)

𝒙′(𝜏) ⋅ (𝑐𝑜𝑠 𝜏 , 𝑠𝑖𝑛 𝜏)

|𝒙′(𝜏)|
𝑞′(𝜏). 

We approximate the updated radial function using trigonometric interpolation with 2𝑀 + 1 coefficients. We 

consider half collocation points concerning the direct problem and we add noise to the far-field data concerning 

the 𝐿2 −norm:  

𝑒𝛿
∞ = 𝑒∞ + 𝛿

‖𝑒∞‖2
‖𝑢‖2

𝑢,  ℎ𝛿
∞ = ℎ∞ + 𝛿

‖ℎ∞‖2
‖𝑣‖2

𝑣, 

for a given noise level 𝛿, and complex-valued vectors 𝑢 and 𝑣, with normally distributed random variables as 

components. 

In the numerical example, the domain is bounded by the curves with radial functions  

,sin0.1cos0.50.7=0.8,= 22
10 ttrandr +

 

and we set 𝜆 = 1 for the impedance function. The material parameters are 𝜀0 = 𝜇0 = 1, in the exterior domain and 

𝜀0 = 𝜇0 = 5, in the interior domain. We consider measurements from two incident directions and we use 𝑛 = 64 

and 𝑀 = 2. In Fig (1), we present the reconstructions for 𝜃 = 𝜋/4 and 𝜑 = 0, 𝜋. The boundary is initially 

approximated by a circle with radius 0.4. The recovered curve is obtained after 20 and 12 iterations for exact and 

noisy data, respectively. 



Leonidas Mindrinos  Journal of Advances in Applied & Computational Mathematics, 10, 2023 

 

24 

We observe that the reconstructions are satisfactory and stable with respect to noise. However, they depend 

on the initial guess. 

  

Figure 1: The reconstructed boundary curve (blue) for exact (left) and data with noise 4% (right) from two incident directions 

(arrows). The outer boundary (brown) and the initial guess (green) are both circles with different radii. 
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