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ABSTRACT 

The triangulation of planar domains is a relevant and largely studied problem in 

many applied sciences. This paper analyzes the computational time of a 

triangulation algorithm for plane domains with holes, introduced in a previous 

paper. This algorithm is based on the normal offsetting technique starting from 

a polygonal approximation of the domain boundary. It is shown that the 

computational time is linear with respect to the number of vertices of the 

triangulation. Experimental results confirm the theoretical upper bound obtained 

for the computational time. 

 

 

©2023 Egidi et al. Published by Avanti Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution Non-

Commercial License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly 

cited. (http://creativecommons.org/licenses/by-nc/4.0/) 

https://www.avantipublishers.com/
https://doi.org/10.15377/2409-5761.2023.10.5
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0003-4646-2836
https://orcid.org/0000-0001-7800-2768


Analysis of the Computational Cost of PolyFront Egidi et al. 

 

51 

1. Introduction 

The generation of a high-quality grid of plane domains is fundamental in many areas of applied sciences, such 

as engineering and architecture. In [1], a grid generation and optimization framework is proposed, which 

automatically generates triangular grids over complex surfaces for architectural design. In [2] and [3], a new method 

based on Coulomb’s law is proposed with the same purposes. The construction of high-quality triangulations of 

plane domains is also fundamental for solving problems in many areas of applied mathematics [4, 5]. In fact, several 

numerical simulations are based on such triangulations and the quality of the results heavily depends on the quality 

of the triangulation [6, 7]. In particular, [8] proposes an algorithm generating a guaranteed quality mesh for the 

curvilinear triangulation of planar domains with piecewise polynomial boundary. In [9], we introduced a new 

triangulation algorithm named PolyFront (PF) based on polygon offsetting, starting from a polygonal approximation 

of the domain boundary. The constructed offset polygons are used to insert vertices and triangles, in particular, 

triangles are inserted subsequently to the current mesh as in the paving method [10, 11], and in the advancing front 

method [12-15]. In the same paper [9], we experimentally showed that this algorithm PF produces a good-quality 

mesh with reduced computational time. An interactive graphical user interface for PF was presented and illustrated 

in [16]. Moreover, the proposed method has been implemented in a software package including also the graphical 

user interface, that can be downloaded from https://docenti.unicam.it/public/Cad_2D.zip. 

In this paper, we analyze the PF algorithm and we prove that the computational time of PF is 𝑂(𝑛𝑒𝑛𝑣) when the 

domain has a polygonal boundary approximation made of 𝑛𝑒 edges and the generated triangulation has 𝑛𝑣 vertices. 

The paper is organized as follows. The main proof is in Sections 2 and 3; in particular, in Section 2 we report and 

discuss the algorithm PF proposed in [9], for the reader’s convenience; in Section 3, we analyze the PF algorithm and 

theoretically estimate its computational cost. Then, in Section 4, we confirm by experiments the upper bound of the 

computational time. Finally, in Section 5, we give some final remarks and conclusions. 

2. The Algorithm 

For the reader's convenience, we report PF, the triangulation algorithm proposed in [9], and we give the 

computational cost of some steps of PF. PF constructs a triangulation of a planar connected domain Ω ⊂ ℝ2 with 

holes, this construction starts from a polygonal approximation of the boundary 𝜕𝛺 of the domain. So, in the 

following 𝛺 is supposed to have a polygonal boundary, otherwise, it is replaced by a domain having a boundary 

equal to a polygonal approximation of 𝜕𝛺. Moreover, the proposed algorithm constructs triangulations where the 

length of the triangle edges is as much as possible near a desired length 𝑑. The constructed triangulation is defined 

by , the set of triangulation vertices, and , the set of its triangles.  

We begin with some notations. We denote with 𝑛𝑏𝑣 the number of the triangulation vertices chosen in 𝜕𝛺. A 

simple polygon 𝑃 with 𝑘(≥ 3) edges is represented by an ordered list of its vertices 𝑃 = (𝑣0, 𝑣1, … , 𝑣𝑘−1). The interior 

of the polygon is denoted with 𝐼(𝑃). We associate to each edge 𝐸 of 𝑃 a positive real number 𝑑𝐸 that gives the 

distance between two consecutive triangulation vertices chosen on 𝐸, of course, 𝑑𝐸 is chosen as near as possible to 

the desired length 𝑑. Moreover, we denote with 𝐿𝐸 the length of 𝐸. If Ω ⊂  ℝ2 has ℎ holes, then it is represented by a 

list of polygons (𝑃𝐸 ,  𝑃1
𝐼 , … , 𝑃ℎ

𝐼 ), where 𝜕𝐼(𝑃𝐸) is the external boundary of 𝛺 and 𝜕𝐼(𝑃𝑖
𝐼), 𝑖 = 1,2, … , ℎ are the boundaries 

of its ℎ holes. We note that with this representation we have 𝛺 = 𝐼(𝑃𝐸)\∪𝑖=1
ℎ 𝐼(𝑃𝑖

𝐼), and so we use the following 

notation 𝛺 = 𝐷(𝑃𝐸 , 𝑃1
𝐼 , … , 𝑃ℎ

𝐼 ). Moreover, the vertices of a given polygon 𝑃 are ordered counterclockwise when 𝑃 is 

an external polygon and clockwise otherwise. In particular, when 𝛺 has no hole (ℎ = 0) then in its representation we 

have only the external polygon and so 𝛺 = 𝐷(𝑃𝐸). For example, Fig. (1a) shows a domain 𝛺 with one hole, its 

representation is 𝛺 = 𝐷(𝑃𝐸 , 𝑃1
𝐼) where the external polygon is 𝑃𝐸 = (𝑣0, … , 𝑣6) and the unique internal polygon is 𝑃1

𝐼 =

(𝑢0, … , 𝑢3).  
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(a) (b) 

Figure 1: An example: (a) The domain 𝛺 with a quadrilateral hole. (b) The vertices of the triangulation were chosen on 𝜕𝛺. 

We define edge of 𝛺 = 𝐷(𝑃𝐸 , 𝑃1
𝐼 , … , 𝑃ℎ

𝐼 ) as an edge of a polygon in its representation. Let 𝑛𝑒 be the number of 

edges of 𝛺 and let 𝐸𝑗, 𝑗 = 1,2, … , 𝑛𝑒 its edges. The length of the boundary of 𝛺 is given by 𝑝𝛺 = ∑ 𝐿𝐸𝑗𝑗=1,   𝑛𝑒
. We define 

subsequent domains of a given domain 𝛺 the domains contained in 𝛺 such that their edges are parallel to the edges 

of 𝛺 and are at a fixed distance from them. Fig. (2a) shows the result obtained by using the construction of the 

subsequent domains starting from the domain 𝛺 shown in Fig. (1a), in particular, the domain 𝛺 = 𝛺0 =

𝐷((𝑣0, … , 𝑣6), (𝑢0, … , 𝑢3)) has a unique subsequent domain 𝛺1 = 𝐷((𝑤0, … , 𝑤6), (𝑧0, … , 𝑧3)), the domain 𝛺1 has three 

subsequent domains 𝛺2 = 𝐷((𝑦0, 𝑦1 , 𝑦2)), 𝛺3 = 𝐷((𝑥0, 𝑥1, 𝑥2)) and 𝛺4 = 𝐷((𝑡0, … , 𝑡3)), and these last three domains 

have no subsequent domain.  

 

(a) (b) 

Figure 2: (a) The construction of the subsequent domains. (b) The triangulation obtained by applying the PF algorithm on domain 

𝛺 of Fig. (1a). 

In the following, we report the PF algorithm that has been proposed in [9] and computes a triangulation of a 

generic domain 𝛺 ⊂  ℝ2. PF uses the construction of the subsequent domains starting from a given domain 𝛺 to 

compute a triangulation of the domain itself. In Fig. (2b) we have the resulting triangulation obtained on the domain 

shown in Fig. (1a) by using PF. 
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Algorithm 1 (PF) 

Let 𝛺 ⊂  ℝ2 be a given domain, let 𝑑 be the desired length for a triangulation on 𝛺; construct a triangulation on 

𝛺 by computing  and  as follows: 

•  S1 Initialization: 𝛺0 = 𝛺, 𝑖 = 0, 𝑗 = 0, = ∅, = ∅.  

•  S2 Insert in  the vertices chosen on 𝜕𝛺.  

•  S3 Create the ℎ(𝑖) ≥ 0 subsequent domains of 𝛺𝑖; denote these domains with 𝛺𝑗+1, 𝛺𝑗+2, … , 𝛺𝑗+ℎ(𝑖); set 𝑗 = 𝑗 +

ℎ(𝑖).  

•  S4 Insert in  the vertices chosen on the boundary of the subsequent domains of 𝛺𝑖.  

•  S5 Insert in  the triangles obtained by triangulating the polygonal domain between 𝛺𝑖 and its subsequent 

domains, if ℎ(𝑖) = 0 triangulate 𝛺𝑖.  

•  S6 Set 𝑖 = 𝑖 + 1 and if 𝑖 ≤ 𝑗 go to S3.  

•  S7 Compute the mesh optimization.  

 

(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 

Figure 3: The steps of the PF algorithm for domain 𝛺 of Fig. (1a). (a) Step S3 for 𝑖 = 0; (b) Step S4 for 𝑖 = 0; (c) Step S5 for 𝑖 = 0; 

(d) Step S3 for 𝑖 = 1; (e) Step S4 for 𝑖 = 1; (f) Step S5 for 𝑖 = 1; (g) Step S5 for 𝑖 = 2; (h) Step S5 for 𝑖 = 3; (i) Step S5 for 𝑖 = 4.  
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In step S2 we insert in  some points chosen on the boundary of 𝛺 in the following way. For each edge 𝐸 of 𝛺, 

we define 𝑛𝐸 as the largest integer such that |𝐿𝐸 − 𝑛𝐸𝑑| ≤
𝑑

2
 and we define 𝑑𝐸 =

𝐿𝐸

𝑛𝐸
, then we insert, in , 𝑛𝐸 + 1 

uniformly distributed points of 𝐸 such that two consecutive points have distance equal to 𝑑𝐸, note that for each 

edge 𝐸 we have:  

𝑑

2
≤ 𝑑𝐸 <

3𝑑

2
. (1) 

With this construction, we have that the number 𝑛𝑏𝑣 of the triangulation vertices chosen in 𝜕𝛺 is  

𝑛𝑏𝑣 = ∑ 𝑛𝐸𝑗
= ∑

𝐿𝐸𝑗

𝑑𝐸𝑗

𝑛𝑒
𝑗=1

𝑛𝑒
𝑗=1 , (2) 

 The computational time necessary for this construction is 𝑂(𝑛𝑏𝑣), and the folowing inequalities hold  

2𝑝𝛺

3𝑑
≤ 𝑛𝑏𝑣 ≤

2𝑝𝛺

𝑑
. (3) 

Fig. (1b) shows the 𝑛𝑏𝑣 triangulation vertices chosen in 𝜕𝛺, note that two consecutive vertices chosen in an edge 

𝐸 of 𝜕𝛺 have a fixed distance 𝑑𝐸 that is as near as possible to 𝑑. 

In step S3, at the generic 𝑖-th iteration, we construct 𝛺𝑗+1, 𝛺𝑗+2, … , 𝛺𝑗+ℎ(𝑖) the subsequent domains of 𝛺𝑖 by using 

a parallel offsetting technique; these domains are further processed in the next iterations of the algorithm. This not 

trivial construction of the subsequent domains of a given domain 𝛺𝑖 is carried on in such a way that each edge 𝐸′ 

of the subsequent domains of 𝛺𝑖 is parallel to an edge 𝐸 of 𝛺𝑖, is inside 𝛺𝑖 and the distance between 𝐸′ and 𝐸 is 
√3

2
𝑑𝐸, 

that is the height of an equilateral triangle with edge length 𝑑𝐸. Moreover, we put 𝑑𝐸′ = 𝑑𝐸. Figs. (2a, 3a, 3d),  

show similar examples of this construction, see [9] for more details. At each 𝑖-th iteration the computational time 

required for this construction is 𝑂(𝑛𝑒
2), in fact for each 𝑖 it depends quadratically on the number of edges of 𝛺𝑖 that 

is 𝑂(𝑛𝑒). 

In step S4, at the generic 𝑖-th iteration, we insert in  some points chosen on the boundary of 𝛺𝑗+1, 𝛺𝑗+2, … , 𝛺𝑗+ℎ(𝑖) 

the subsequent domains of 𝛺𝑖. These points are chosen in such a way that, together with the triangulation vertices 

previously placed along the boundary of 𝛺𝑖, they determine as many as possible equilateral triangles in the strip 

𝛺𝑖\∪ℎ=𝑗+1
𝑗+ℎ(𝑖)

𝛺ℎ. In particular, when 𝐸′ is an edge of a subsequent domain of 𝛺𝑖 parallel to edge 𝐸 of 𝛺𝑖, we insert in  

points of 𝐸′ uniformly distributed that satisfy the following two properties: 1) the distance between two consecutive 

points is equal to 𝑑𝐸′ = 𝑑𝐸; 2) at least one of these points is on the axis of the segment defined by two consecutive 

triangulation vertices of 𝐸 previously inserted in . When necessary, we insert also the endpoints of 𝐸′. We note that 

when 𝛺𝑖 has no subsequent domains, i.e. ℎ(𝑖) = 0, we do not insert other points in . At each 𝑖-th iteration the 

computational time required for this construction is 𝑂(𝑛𝑏𝑣) in fact this is the order of the number of triangulation 

vertices chosen in the edges of the subsequent domains of 𝛺𝑖. Once we inserted in  the points corresponding to 

each subsequent domain of 𝛺𝑖, we control if two of the inserted points are too close to each other, in this case, the 

points are modified. At each 𝑖-th iteration, this check can be made by cycling on the edges of 𝛺𝑖 and the edges of its 

subsequent domains, and so its computational cost is 𝑂(𝑛𝑒
2). In Figs. (3b, 3e) some examples are shown. 

In step S5, at the generic 𝑖-th iteration, we triangulate the strip 𝑅𝑖 = 𝛺𝑖\ ∪ℎ=𝑗+1
𝑗+ℎ(𝑖)

𝛺ℎ, between a domain 𝛺𝑖 and its 

subsequent domains, by using the triangulation vertices inserted in step S4, see Figs. (3c) and (3f) as examples of 

the triangulation obtained with this step. Note that, if the domain 𝛺𝑖 has no subsequent domains, i.e. ℎ(𝑖) = 0, we 

triangulate 𝛺𝑖, see Figs. (3g, 3h, 3i) as examples of the triangulation obtained with this step when ℎ(𝑖) = 0. In 

particular, the triangulation of the strip 𝑅𝑖 is performed by two different phases: in the first phase we construct the 

equilateral triangles whose union gives a region 𝑆𝑖 ⊂ 𝑅𝑖, every one of these equilateral triangles has at least one 

vertex on 𝜕𝛺𝑖 and at least one vertex on 𝜕(∪ℎ=𝑗+1
𝑗+ℎ(𝑖)

𝛺ℎ); in the second phase, the Delaunay triangulation of each 

connected component of the critical region 𝑅𝑖\𝑆𝑖  is computed by using the Watson algorithm [17], possibly after 

having added a negligible number of Steiner points, depending on a certain closeness criterion.  
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Figure 4: The first phase of step S5 of the PF algorithm for domain 𝛺 of Fig. (1) inserts in 𝑆 only the equilateral triangles. The 

more dark areas are triangulated in the second phase.  

For example, Fig. (4) shows the triangulation computed with the first phase on the strip 𝑅0 = 𝛺0\𝛺1 shown in Fig. 

(3b), moreover, the more dark areas denote the critical region 𝑅0\𝑆0 where in the second phase of step S5 we use 

the Watson algorithm to triangulate such a region and in Fig. (3c) it is shown the final result. In Figs. (5) and (11), we 

have the triangles inserted in  by using only the first phase of step S5 at each iteration 𝑖. Let 𝛤 be the union of all 

the critical regions 𝑅𝑖\𝑆𝑖  obtained at each iteration 𝑖-th of the PF algorithm, in Fig. (5) 𝛤 is the untriangulated part of 

the regular polygon, in Fig. (11) 𝛤 is the more dark area. We note that, in this region the PF algorithm at each 𝑖-th 

iteration applies the Watson algorithm on connected subdomains to compute the Delaunay triangulation of the 

triangulation vertices inside 𝛤. Moreover, at each 𝑖-th iteration the computational time required for the first phase 

of step S5 is 𝑂(𝑛𝑏𝑣) because it depends on the number of triangulation vertices of the triangulation chosen on the 

boundary of 𝛺𝑖. The analysis of the computational cost of the second phase of step S5 will be made in Section 3.  

 

Figure 5: The untriangulated part is the union of all the critical regions. 

Step S6 allows the recursively application of steps from S3 to S5 to each of the domains arising from step S3; this 

process ends since at iteration 𝑖-th each subsequent domain of 𝛺𝑖 is contained in 𝛺𝑖 Moreover, by construction, the 

distance between each edge 𝐸′ of any subsequent domain of 𝛺𝑖 and the parallel edge 𝐸 of 𝛺𝑖 is equal to 
√3

2
𝑑𝐸 but 

𝑑𝐸 >
𝑑

2
. So, since the distance between the boundary of 𝛺𝑖 and the boundary of its subsequent domain is greater 

than 
√3𝑑

4
 after 𝐼 = 𝑂(𝑛𝑏𝑣) iterations there is no other subsequent domain. So the number of iterations of steps S3-S5 

performed by the algorithm is 𝐼 = 𝑂(𝑛𝑏𝑣). 

We remark that the quality of the triangulation produced by the above procedure is already good. However, we 

optionally apply a mesh optimization to improve it. In step S7, at the end of the iterations, the triangulation 

constructed in the previous steps is optimized with respect to the minimal angle criterion and the maximal angle 

criterion, see [9] for more details. In Fig. (2b) we have the mesh obtained after optimization over the domain of Fig. 

(1a). We note that the optimization process is needed only for the triangles whose vertices are in 𝛤. 
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3. Computational Time 

Let 𝛺 be a domain with polygonal boundary, 𝑛𝑒 be the number of edges of 𝛺, 𝑛𝑣 be the number of triangulation 

vertices generated by the PF algorithm, 𝐼 be the number of iterations of steps S3-S5, 𝑛𝑏𝑣 be the number of 

triangulation vertices chosen by the PF algorithm on 𝜕𝛺, 𝛤 =∪𝑖=1
𝐼 (𝑅𝑖\𝑆𝑖) be the union of the critical regions arising 

when we apply the PF algorithm on 𝛺. Then the iteration for 𝑖 = 1, … , 𝐼 of steps S3-S5 with the exception of the 

second phase of step S5 gives the triangulation of 𝛺\𝛤, see Figs. (5) and (11) for examples. 

Theorem 1. The computational time of the PF algorithm for constructing the triangulation of 𝛺\𝛤 is 𝑂(𝑛𝑒𝑛𝑣).  

Proof: We note that the number 𝑛𝑣 of the vertices of the triangulation constructed with the PF algorithm is 𝑛𝑣 =

𝑂(𝑛𝑏𝑣
2 ). Hence, for each iteration 𝑖 = 1, … 𝐼 the computational time of all the steps S3-S5 with the exception of the 

second phase of step 𝑆5 is 𝑂(𝑛𝑒
2) + 𝑂(𝑛𝑏𝑣) = 𝑂(𝑛𝑒𝑛𝑏𝑣), moreover, 𝐼 = 𝑂(𝑛𝑏𝑣) so that the computational time 

necessary for the construction of the triangulation of 𝛺\𝛤, is 𝑂(𝑛𝑒𝑛𝑏𝑣
2 ) = 𝑂(𝑛𝑒𝑛𝑣). 

The Delaunay triangulation of the remaining part 𝛤 is computed in the second phase of step S5 by applying the 

Watson algorithm in each critical region separately, and so its computational time is less than 𝑂(𝐾 𝑙𝑜𝑔 𝐾) where 𝐾 is 

the number of the triangulation vertices that are inside 𝛤, in fact this is the computational time of the Watson 

algorithm applied in whole 𝛤. 

In the following we prove that 𝐾 = 𝑂(√𝑛𝑣), in particular, we prove an elementary lemma concerning the plane 

tessellation  made up of equilateral triangles with edge length 𝑑, (Fig. 6). Then we give two lemma where we 

evaluate the number of the triangulation vertices in 𝛤 when 𝛺 is a regular polygon and when 𝛺 is a general domain. 

 

Figure 6: The segment 𝑆 meets at most 4(√3𝐿𝑆/(3𝑑) + 1) interiors of triangles in tessellation . 

Lemma 1. Given any segment 𝑆 of length 𝐿𝑆, the number 𝑁(𝑆) of triangles of  whose interiors meet 𝑆 satisfies 

the following inequality  

𝑁(𝑆) ≤ 4 (
𝐿𝑆

𝑑
+ 1), (4) 

and the union of these 𝑁(𝑆) triangles is a polygonal disk with 𝑁(𝑆) + 2 vertices.  

Proof: Let 𝑢1 = (1/2, −√3/2), 𝑢2 = (1,0), and 𝑢3 = (1/2, √3/2) unit vectors parallel to the edges of  and 0 ≤ 𝜃𝑖 ≤

𝜋/2 be the angle between 𝑆 and the direction determined by 𝑢𝑖. Up to symmetries of , we can assume 𝜃1 ≤ 𝜃2 ≤

𝜃3 (cf. Fig. 6). Then, we have 𝜃1 ≤ 𝜋/6 ≤ 𝜃2 ≤ 𝜋/3 ≤ 𝜃3. 

We denote by 𝑄 the smallest parallelogram among the ones which contain 𝑆, are unions of triangles of  and 

have edges parallel to 𝑢2 and 𝑢3 (cf. Fig. 7). We think of 𝑄 as the union of 𝐿2 strips parallel to 𝑢3 made up of triangles 

of , where 𝑑𝐿2 is the length of the edges of 𝑄 parallel to 𝑢2. 
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Figure 7: The smallest parallelogram 𝑄 containing 𝑆. 

Because of the assumptions made on the 𝜃𝑖 ’s, 𝑆 can meet at most two triangle interiors inside each strip, note 

that the union of these triangles gives a polygonal disk with 𝑁(𝑆) + 2 vertices. Hence, we have 𝑁(𝑆) ≤ 2𝐿2 but 𝑑𝐿2 ≤

(𝐿𝑆/ 𝑐𝑜𝑠 𝜃2 + 2𝑑) ≤ (2𝐿𝑆 + 2𝑑) so 𝑁(𝑆) ≤ 4(𝐿𝑆/𝑑 + 1). 

Now, we use the previous lemma in order to obtain the claimed upper bound on the number of triangulation 

vertices in 𝛤 which arise when we perform the PF algorithm on a regular polygon. 

Lemma 2. The union 𝛤 of all the critical regions arising when we perform the PF algorithm on a regular polygon 

𝛺, with 𝑛𝑒 edges of length 𝑛 ⋅ 𝑑, to get a triangulation with preferred edge length 𝑑, has at most 4𝑛𝑏𝑣𝑛𝑒/5 + 8𝑛𝑒 

triangulation vertices, where 𝑛𝑏𝑣 = 𝑛𝑒 ⋅ 𝑛 is the number of triangulation vertices on the boundary of the regular 

polygon.  

Proof: It suffices to prove that inside each triangle 𝑇 bounded by an edge of the polygon and two radii of its 

circumcircle, there are at most 4𝑛𝑛𝑒/5 + 8 triangulation vertices of the critical regions. Looking at 𝑇 and denoting by 

𝑅 one of its radial edges, we see that the number of such triangulation vertices inside 𝑇 is at most 𝑁(𝑅) + 4, where 

𝑁(𝑅) is the number of triangles of the tessellation whose interiors meet 𝑅 (cf. Fig. 8). In fact, by Lemma 1 the union 

of the triangles whose interiors meet 𝑅 is a polygonal disk with 𝑁(𝑅) + 2 vertices, but at most half of them plus one 

lies inside 𝑇. Then, 𝑁(𝑅) + 4 is obtained by considering the contribute of the other radial edge of 𝑇. 

Now, by Lemma 1 and taking into account that 𝑛𝑒 ≥ 3 and 𝑠𝑖𝑛 𝑥 ≥
3√3𝑥

2𝜋
 when 0 ≤ 𝑥 ≤

𝜋

3
, we have the inequalities  

 𝑁(𝑅) ≤ 4 (
𝑛

2 𝑠𝑖𝑛(𝜋/𝑛𝑒)
+ 1) ≤ 4 (

𝑛

3√3/𝑛𝑒
+ 1) ≤

4𝑛𝑛𝑒

5
+ 4 , 

which complete the proof.  

 

Figure 8: The triangulation vertices of the critical regions inside the triangle 𝑇. 

Lemma 3. Let 𝛺 ⊂  ℝ2 be a domain with polygonal boundary 𝜕𝛺. Let 𝑛𝑒 be the number of its edges and let 𝑛𝑏𝑣 

be the number of triangulation vertices chosen on 𝜕𝛺. The union 𝛤 of all the critical regions arising when we perform 

the PF algorithm on 𝛺 to get a triangulation with desired edge length 𝑑, has at most 6𝑛𝑏𝑣𝑛𝑒 + 12𝑛𝑒
2 − 16𝑛𝑒 

triangulation vertices.  

Proof: Let 𝐸𝑗, 𝑗 = 1, … , 𝑛𝑒 be the edges of 𝛺. Let 𝛺𝑖, 𝑖 = 0, … , 𝐼, be the domains constructed in the PF algorithm. For 

𝑖 = 0, … 𝐼, let 𝐸 be an edge of domain 𝛺𝑖 and let 𝐸1
′ , … , 𝐸𝐿

′  be the edges of the subsequent domains of 𝛺𝑖 that are 

parallel to 𝐸 and have distance 
√3

2
𝑑𝐸 from 𝐸. Then there exist 𝐿 + 1 unique segments 𝑆1, … , 𝑆𝐿+1 that join end points 

of 𝐸1
′ , … , 𝐸𝐿

′  and 𝐸 such that (∪𝑙=1
𝐿 𝐸𝑙

′) ∪ (∪𝑙=1
𝐿+1 𝑆𝑙) ∪ 𝐸 is a quadrilateral (cfr. Fig. 9). 
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Figure 9: The edge 𝐸 and the corresponding edges 𝐸𝑗
′ at distance 

√3

2
𝑑𝐸 , joining their endpoints with suitable segments 𝑆𝑗 we 

obtain a quadrilateral. 

We denote with  the set whose elements are either the segments above defined or edges of 𝛺𝑖, 𝑖 = 0, … , 𝐼. In 

Fig. (10) we can see an example of the set . By using the PF algorithm in the domain 𝛺, we can identify 𝑛𝑒 connected 

regions 𝑇𝑗, 𝑗 = 1, … , 𝑛𝑒 (an example is shown in Fig. (11) characterized by the following properties.  

 

Figure 10: The segments in  form a graph. 

 

Figure 11: In the domain 𝛺 there are 6 connected regions 𝑇𝑗 containing a tessellation  made up of equilateral triangles, the 

gray area is the critical region 𝛤. 

• 𝑇𝑗 contains the regions where with the PF algorithm we have inserted equilateral triangles that come from 

edge 𝐸𝑗 of 𝜕𝛺, these triangles give a tessellation   made up of equilateral triangles with edge length 𝑑𝐸𝑗
.  

•  The triangulation , resulting from applying the PF algorithm without the smoothing step, is the union of , 

𝑗 = 1, … , 𝑛𝑒, and of the triangulation of the vertices in 𝛤.  

• 𝑇𝑗 has polygonal boundary whose edges are union of segments belonging to .  

•  The edges of 𝑇𝑗 are 𝐸𝑗 and other 𝑘𝑗 edges 𝐸𝑗
𝑘, 𝑘 = 1, … , 𝑘𝑗, moreover by construction we have  

∑ 𝐿
𝐸𝑗

𝑘 ≤ 𝑝𝛺 .
𝑘𝑗

𝑘=1  (5) 
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First of all, we note that  

𝑘𝑗 ≤ 3𝑛𝑒 − 4, (6) 

that is a consequence of the following facts. For each 𝑘 ≠ 𝑗, 𝑇𝑘 ∩ 𝑇𝑗 is a graph with at most two edges, in fact 𝑇𝑘 ∩ 𝑇𝑗 

is the union of segments of  that are all aligned with eventually the exception of one segment. So that 𝑇𝑗 has at 

most 2(𝑛𝑒 − 1) edges in common with the other 𝑛𝑒 − 1 regions 𝑇𝑘, 𝑘 ≠ 𝑗, and these edges are joined by at most 𝑛𝑒 −

2 segments in . 

By construction, each triangulation vertex in 𝛤 belongs to a region 𝑇𝑗, 𝑗 = 1, … , 𝑛𝑒. So to prove the lemma it suffices 

to see that inside each region 𝑇𝑗, 𝑗 = 1, … , 𝑛𝑒 there are at most 6𝑛𝑏𝑣 + 12𝑛𝑒 − 16 triangulation vertices inside 𝛤. 

Looking at 𝑇𝑗 we see that each vertex inside 𝛤 ∩ 𝑇𝑗 is a vertex of a triangle in  whose interior meets 𝐸𝑗
𝑘 for some 

𝑘 = 1, … , 𝑘𝑗. 

Moreover, for each 𝑘 we have at most 𝑁(𝐸𝑗
𝑘) triangles of tessellation  whose interiors meet 𝐸𝑗

𝑘, and the union 

of these triangles is a polygonal disk with at most 𝑁(𝐸𝑗
𝑘) + 2 triangulation vertices, so that at most half of them plus 

one lies inside 𝑇𝑗. Then inside 𝑇𝑗 there are at most ∑ (
𝑁(𝐸𝑗

𝑘)

2
+ 2)

𝑘𝑗

𝑘=1  triangulation vertices chosen in 𝛤. 

Now, by Lemma 1 and equations (1), (3), (5) we have the inequalities  

 ∑ (
𝑁(𝐸𝑗

𝑘)

2
+ 2) ≤ ∑ 2 (

𝐿
𝐸𝑗

𝑘

𝑑𝐸𝑗

+ 1) + 2𝑘𝑗 ≤
𝑘𝑗

𝑘=1

𝑘𝑗

𝑘=1  

 ≤ 2 (
𝑝𝛺

𝑑𝐸𝑗

+ 𝑘𝑗) + 2𝑘𝑗 ≤ 6𝑛𝑏𝑣 + 4𝑘𝑗 , 

which, with (6), completes the proof.◻ 

Theorem 2. For domains with polygonal boundary approximation having 𝑛𝑒 edges, the computational time of 

the PF algorithm is 𝑂(𝑛𝑒𝑛𝑣).  

Proof: By Theorem 1, the computational time of steps S1-S6 is 𝑂(𝑛𝑒𝑛𝑣) + 𝑂(𝐾 𝑙𝑜𝑔 𝐾) where 𝐾 is the number of 

triangulation vertices in 𝛤. By Lemma 2 when the domain is a regular polygon and by Lemma 3, when the domain 

is a general domain with a polygonal boundary approximation with 𝑛𝑒 edges, we have that 𝐾 = 𝑂(𝑛𝑒𝑛𝑏𝑣). Then, from 

the quite trivial fact that 𝑛𝑣 = 𝑂(𝑛𝑏𝑣
2 ) we have that the computational time of steps S1-S6 is 𝑂(𝑛𝑒𝑛𝑣). Moreover, the 

optimization of the resulting mesh can be performed by cycling on the 𝐾 triangulation vertices in 𝛤, and so its 

computational cost is 𝑂(𝑛𝑒𝑛𝑏𝑣).  

We remark that in the worst case 𝑛𝑒 = 𝑛𝑏𝑣 the computational cost of PF is 𝑂(𝑛𝑣
3/2

), instead in the more frequent 

case 𝑛𝑒 << 𝑛𝑏𝑣 the computational cost of PF is 𝑂(𝑛𝑣). 

4. Experimental Results 

In the experimental results, only the computational cost of the mesh construction without optimization has been 

considered, for two reasons: 1) the news of the PF algorithm is in the mesh construction; 2) even if the optimization 

is only needed on triangles lying on 𝛤 and therefore its computational cost is 𝑂(𝑛𝑒𝑛𝑏𝑣), in the present version of the 

optimization is made on all triangles. Tests have been performed on a Pentium 4 CPU 2.66GHz, RAM 480 Mb.  

The three domains shown in Fig. (12) have been considered in the numerical simulations: 𝛺(1) is a polygon with 

6 edges and without holes; 𝛺(2) has two holes and 14 edges, 𝛺(3) is a domain with one hole and curved boundary, 

the polygonal discretization of its boundary has 55 edges of which 12 are edges of the hole. In Fig. (13) we can see 

examples of mesh generated by the PF algorithm on these domains, larger meshes generated by PF have the same 
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aspect. 

 

Figure 12: 𝛺(1) is a polygon with 6 edges and without a hole; 𝛺(2) has two holes and 14 edges; 𝛺(3) has one hole and curved 

boundary whose discretization has 55 edges. 

 

Figure 13: Mesh generated by PF on 𝛺(1) has 𝑛𝑣 = 571 vertices. Mesh generated by PF on 𝛺(2) has 𝑛𝑣 = 650. Mesh generated by 

PF on 𝛺(3) has 𝑛𝑣 = 788. 

Table 1:  Computational time 𝒕, in seconds [𝒔], needed for mesh generation with the algorithm PF without optimization 

for the domain 𝜴(𝟏), shown in Fig. (12); 𝒏𝒆 = 𝟔 is the number of edges of the domain boundary, and 𝒏𝒗 is the 

number of vertices of the mesh constructed by PF. Also the value of 
𝒕

𝒏𝒆𝒏𝒗
 is reported. 

𝒏𝒗 𝒕 [𝒔] 
𝒕

𝒏𝒆𝒏𝒗

 

50029 0.641 2.14(−6) 

100031 1.231 2.05(−6) 

150105 1.815 2.02(−6) 

200232 2.452 2.04(−6) 

250228 2.858 1.90(−6) 

300358 3.492 1.94(−6) 

350075 3.904 1.86(−6) 

399935 4.411 1.84(−6) 

449890 4.978 1.84(−6) 

500138 5.473 1.82(−6) 
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In Tables 1-3 we report the computational time 𝑡, in seconds [𝑠], needed for the mesh generation with the PF 

algorithm without optimization for each of the domains 𝛺(𝑖), 𝑖 = 1,2,3, shown in Fig. (12), for different values of the 

number of vertices 𝑛𝑣. In the same tables also the values of 
𝑡

𝑛𝑒𝑛𝑣
 are reported. For each domain 𝛺(𝑖), 𝑖 = 1,2,3, in Fig. 

(14) there are reported the values of 𝑛𝑣 and of 
𝑡

𝑛𝑒𝑛𝑣
 on the 𝑥 -axes and the 𝑦 -axes, respectively. In addition, in Fig. 

(15) we reported the values of 𝑛𝑣 and of 𝑡 on the 𝑥-axes and the 𝑦-axes, respectively. 

Table 2:  Computational time 𝒕, in seconds [𝒔], needed for mesh generation with the algorithm PF without optimization 

for the domain 𝜴(𝟐), shown in Fig. (12); 𝒏𝒆 = 𝟏𝟒 is the number of edges of the domain boundary, and 𝒏𝒗 is the 

number of vertices of the mesh constructed by PF. Also the value of 
𝒕

𝒏𝒆𝒏𝒗
 is reported. 

𝒏𝒗 𝒕 [𝒔] 
𝒕

𝒏𝒆𝒏𝒗

 

50006 0.799 1.14(−6) 

100001 1.374 9.81(−7) 

150036 1.981 9.43(−7) 

200022 2.545 9.09(−7) 

250063 3.219 9.19(−7) 

300006 3.649 8.69(−7) 

349944 4.403 8.99(−7) 

399975 4.759 8.50(−7) 

450009 5.448 8.65(−7) 

500017 6.137 8.77(−7) 

 

Table 3: Computational time 𝒕, in seconds [𝒔], needed for mesh generation with the algorithm PF without optimization 

for the domain 𝛀(𝟑), shown in Fig. (12); 𝒏𝒆 = 𝟓𝟓 is the number of edges of the discretization of the domain 

boundary, and 𝒏𝒗 is the number of vertices of the mesh constructed by PF. Also the value of 
𝒕

𝒏𝒆𝒏𝒗
 is reported. 

𝒏𝒗 𝒕 [𝒔] 
𝒕

𝒏𝒆𝒏𝒗

 

49993 1.471 5.35(−7) 

99449 3.195 5.84(−7) 

150510 3.806 4.60(−7) 

200998 4.527 4.10(−7) 

249349 5.483 4.00(−7) 

299032 6.806 4.14(−7) 

349306 8.481 4.41(−7) 

400670 8.911 4.04(−7) 

449653 9.951 4.02(−7) 

500218 10.363 3.77(−7) 

 

From Tables 1-3 and Fig. (14) we can see that 
𝑡

𝑛𝑒𝑛𝑣
 is near constant.  In addition, from Tables 1-3 and Fig. (15) we 

can conclude that 𝑡 = 𝑂(𝑛𝑣). We note that in the considered domains 𝑛𝑒 << 𝑛𝑏𝑣. 
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Figure 14: In the 𝒙-axis there are displayed the values of 𝑛𝑣 and in the 𝑦-axis there are displayed the values of 
𝑡

𝑛𝑒𝑛𝑣
 obtained by 

using PF to generate a mesh on domains 𝛺(𝑖), 𝑖 = 1,2,3. 
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Figure 15: In the 𝒙-axis there are displayed the values of 𝑛𝑣 and in the 𝑦-axis there are displayed the values of 𝑡 obtained by using 

PF to generate a mesh on domains 𝛺(𝑖), 𝑖 = 1,2,3. 

5. Final Remarks 

In this work, we analyze the computational time of PF, that is a triangulation algorithm for 2D domains with holes. 

It is based on polygon offsetting starting from the domain boundary. In Theorem 2, we have shown that PF requires 

a computational time of 𝑂(𝑛𝑒𝑛𝑣). In particular, it is linear with respect to the number of the triangulation vertices 

𝑛𝑣, when 𝑛𝑒, the number of the edges of the domain boundary approximation, is much smaller than 𝑛𝑏𝑣, the number 

of vertices of the triangulation chosen in domain boundary, because 𝑛𝑣 = 𝑂(𝑛𝑏𝑣
2 ). Note that this situation is the most 

common one, even if the domain has a curved boundary, and experimental results confirmed the upper bound 

𝑂(𝑛𝑒𝑛𝑣). 

We remark that the proof of Theorem 2 is essentially based on the fact that the critical regions are concentrated 

near to a finite graph. This seems to be supported by the experimental results. Moreover, Lemma 2 gives an upper 

bound for the number of triangulation vertices of the union of all critical regions. Actually, the PF algorithm applies 

the Delaunay method to each critical region separately. This argument does not allow us to improve the theoretical 

upper bound of Theorem 2, but in practice reduces the computational time of the PF algorithm as it results from 

experiments. 

This study of the computational time of PF, together with the goodness of the generated mesh quality shown in 

[9], suggests that PF should be developed towards nonuniform meshes or a three-dimensional version of the 

proposed method. 
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