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Abstract: The one-parameter exponential family is a practically convenient and widely used unified family of 
distributions, which contains both discrete and continuous distributions that can be used for practical modelling, such as 
the Binomial, Beta, Normal, etc. The problem of estimating product of means has been explored for independent 
populations from one-parameter exponential family in a general sense, with a three-stage sampling design proposed and 
proven to be first-order efficient. The purpose of this paper is to apply the theoretical results to specific applications and 
to provide practical guidance on implementing the proposed sequential design. One popular application problem of 
interest is to estimate the system reliability, for which a Beta-Binomial model will be adopted. The other practical 
problem, which is often encountered in environmental study, is risk assessment and a Normal-Normal model will be used 
for the case. 
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1. INTRODUCTION 

As pointed out by Hardwick and Stout, the 
sequential adaptive sampling scheme is more efficient 
than fixed design, since the former allows the 
opportunity to recover from possible mistakes by 
learning from the accruing data [6]. Fully sequential 
design, in which the data is monitored one at a time, 
has been extensively studied and proven to be very 
powerful. However, there are difficulties with 
implementation on a fully sequential design and could 
be practically undesirable due to the cumulating delay 
in response and set-up costs. A three-stage design 
was first addressed by Woodroofe for estimating the 
difference between two normal means with a quasi-
Bayesian approach [17]. It was also adopted in the 
work of Benkamra Z, et al. for estimating a product of 
several Bernoulli proportions in a frequentist framework 
[1]. Most of the distributions of concern in the previous 
studies belong to the one-parameter exponential 
family, which motivates a further investigation for the 
efficiency of a three-stage sampling scheme to the 
entire one-parameter exponential family [14].  

From a fully Bayesian perspective, the three-stage 
sampling design has not yet been thoroughly exploited 
for estimating product of means, a problem which has 
been of interest in many applications of engineering [2] 
[12], economics [7] and environmental studies [18], to 
name a few. A fully Bayesian approach incorporates 
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available prior information both in defining the risk and 
designing the sampling procedure. Among various 
types of priors, either being purely subjective 
assessment of an experienced expert or conforming to 
some principles, the conjugate priors, if exist, turn out 
to be an adequate choice for providing analytical 
tractable solutions.  

In this article, two specific models will be carefully 
examined under fully Bayesian framework with 
conjugate priors: a Beta-Binomial model used for 
reliability estimation in the context of software 
engineering [11]; and a Normal-Normal model which is 
usually employed for assessing the risk due to 
exposure to radiation or various pollutants [16]. For 
both applications, the three-stage sampling design will 
be adopted and justified to be first-order efficient 
theoretically as well as through Monte Carlo 
simulations. 

2. APPLICATION I: SYSTEM RELIABILITY 
ESTIMATION—BETA-BINOMIAL MODEL 

The first application is to estimate the reliability of a 
system by adopting a Beta-Binomial model, where the 
data collected are discrete values. Reliability is an 
important factor of any system design since any user of 
the system would expect some type of guarantee that 
the system will function to some level of confidence, 
which is especially true in such critical systems that the 
tolerance of failure is on the order of 10-3 percent or 
even smaller [9]. The most fundamental system is a 
series system, which functions if and only if every 
individual component of the system functions 
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successfully [3]. As depicted in Figure 1, the simplest 
series system consists of two components with their 
individual reliability denoted by !  and ! . The reliability 
of such a series system, denoted by ! , is commonly 
represented as the product of reliabilities of both 
components, that is, ! = " # . 

 

Figure 1: Representation of a simple series system 

To obtain an estimate of !  in the Bayesian point of 
view, a fixed number of t testing cases will be 
reasonably distributed between the two components to 
minimize the Bayes risk in terms of squared error loss. 
In particular, the outcome of the ith test randomly taken 
from one component is modeled as a Bernoulli trial 
such that: 

fXi xi( ) =
! if xi = 1,success

1"! if xi = 0, failure
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the outcome of the jth test randomly taken from the 
other component is modeled as another Bernoulli trial 
such that: 

fYj y j( ) =
! if y j = 1,success

1"! if y j = 0, failure
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where ! ,"  are both unknown and assumed to be 
independent with conjugate prior distributions as 
Beta a0 ,b0( ),Beta c0 ,d0( )  respectively, namely, 

 

where 

r = a0 + b0; µ =
a0

a0 + b0
 

represents the fictious sample size and prior mean of 
its conjugate prior distribution. Similarly,  

 

where 

s = c0 + d0; v =
c0

c0 + d0

 

By following certain allocation rule or sampling 
procedure P, t testing cases are distributed with mt to 
one component and nt to the other, where m

t
+ n

t
= t . 

Let Fm
t
, n

t

 be the ! -algebra generated by 

X1, ..., Xm
t

and Y1, ...,Yn
t

. To estimate the system 
reliability ! , with squared error loss, the terminal 
Bayes estimator has been shown to be Am

t

 Bn
t

, where 

Amt is the posterior mean of !  based on X1, ..., Xm
t

, and 

B
n
t

 is the posterior mean of !  based on Y1, ...,Yn
t

 
which can be further specified as: 

Am
t

= E ! Fm
t
, n

t
( ) =

am
t

am
t

+ bm
t

;

Bn
t

= E " Fm
t
, n

t
( ) =

cn
t

cn
t

+ dn
t

               (2.1.1) 

with 

 

The overall Bayes risk of the system, , is thus the 
expected loss incurred by estimating !  by the Bayes 
estimator Am

t

 Bn
t

, which can be written as, 

 
and further expanded into the following form, 

 
 (2.1.2)

 
where 

 
                   (2.1.3)

 

which gives better guidance in making allocation 
decisions [8, 14, 15]. 

It will be shown theoretically that the Bayes risk is 
bounded from below asymptotically and the key 
problem can be further specified as carefully 
determining an allocation of t test cases, i.e. values of 
mt, nt, such that the overall Bayes risk as in (2.1.2) is 
minimized. 
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2.1. Optimal Fixed Design 

In a fixed sampling scheme, test cases are 
allocated before reliability testing even begins. Let 
m = mt, n = nt and by assuming m, n being fixed, we 
can take m, n outside the expectations and have the 
incurred Bayes risk of (2.1.2) simplified by averaging 
out the posterior expectations. It gives: 

 

                        
(2.1.4)

 
where R(F)  denotes the Bayes risk incurred by any 
fixed sampling design. Note that the last term of (2.1.4) 
can be rewritten as: 

 
which will converge to zero in first order as t!"  for 
all possible combinations of m, n as long as they are 
proportional to t asymptotically, i.e. m / t! c  where c is 
a constant. Then, (2.1.4) can be further written as: 
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      (2.1.5) 

As t getting sufficiently large, it can be easily deduced 
from (2.1.5) that the Bayes risk incurred by any fixed 
sampling design is bounded below by: 

 
       (2.1.6) 

where the equality can be achieved if the second term 
of (2.1.5) vanishes by allocating t cases between the 
two populations as follows: 

m
*
=

E ! 1"!( )#$ %&E ' 2( )
E ! 1"!( )#$ %&E ' 2( ) + E ' 1"'( )#$ %&E ! 2( )

t + r + s( ) " r

 

n
*
= t ! m      (2.1.7) 

Or in a more explicit way,  

   
(2.1.8)

 

with attainment of the equality if t test cases are 
allocated as: 

  (2.1.9)
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                 (2.1.10) 

It is interesting to note from (2.1.9) and (2.1.10) that 
Bayes risk incurred by any fixed sampling scheme are 
highly mathematically dependent on, and thus very 
sensitive to, the choice of prior parameters. 
Inaccuracies in a0, b0, c0, d0 may greatly mislead the 
allocation of test cases and never get to be corrected. It 
is this drawback that motivates an adaptive sampling 
scheme which will be discussed in the next section. 

2.2. First-Order Optimal Sequential Sampling 
Design 

Now, the assumption of fixed allocation is relaxed 
and to stress on such randomness, M, N (or Mt, Nt) will 
be adopted in the expression of (2.1.2) and (2.1.3), 
while their sum t remains fixed. A sequential procedure, 
Ps, is defined as a sequence of allocation rules 
t,A

t( ){ }
t!1
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stochastic process A
t
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t
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M
t
,N

t( ) = m,n( ), Mt+1,Nt+1( ) = m +1,n( )! m,n +1( ){ }"Ft  

!m,n, t "N and F
t
= F

t
A
t( ) = A : A# M

t
,N

t( ){{
= m,n( )"Fm,n ,!m,n,m + n = t}}

. Then, Ft 
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. In other words, F

t
 contains 

maximum information which can be found out about the 
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procedure until t test cases are allocated between the 
two populations, which is essential in defining 
martingales and carrying out the following proofs. 

Theorem 2.1 will first be established to give an 
asymptotic first-order lower bound for all such 
sequential procedures, followed by proposing a three-
stage sampling design which will then be shown to be 
first-order efficient and outperform the optimal fixed 
design.  

Theorem 2.1 For any sequential procedure, Ps; 

(2.2.1)
 

Proof: From (2.1.2), we have the overall Bayes risk 
to be: 

 

where AM, UM, BN, VN are specified in (2.1.3). Then, 
(2.2.1) follows from Fatou’s lemma and bounded 
convergence theorem. 

Assume the total sample size t is fixed, the three-stage 
sampling procedure is delivered as follows, where x!" #$  
denotes the integer part of x: 

Stage 1: Sample l(t) observations from each 
population and evaluate M̂ , N̂  by: 

M̂ = min ! t( )" l t( )#$ %&,max ! t( ) Ĉl,l#
$

%
&,l t( ){ }{ }, N̂ =! t( )" M̂ ;  

where 

    
(2.2.2)

 

and 

  

       (2.2.3) 

Stage 2: Sample  more cases 
from each corresponding population and refine the ratio 
as . 

Stage 3: Determine M, N by the updated  such 
that: 

 

and  are defined as: 

   (2.2.4)
 

 are defined and evaluated as in 
(2.1.1) and (2.1.3). 

Note that the procedure indicates that M̂  should be 
no less than l(t) but at most ! t( )" l t( );  while M should 
be at least M̂  but no more than t ! N̂ , since there are 
only t ! N̂ ! M̂( )  test cases left in the last stage. 
Another feature about this design is that the stage 
sizes, l(t) and ! t( ) , are allowed to vary freely as long 
as (2.2.2) and (2.2.3) are satisfied. (2.2.2) was first 
suggested by Rekab for a two-stage procedure [10], 
which seems to imply a choice of l(t) of the form kt( )

!  
for some ! " 0,1( )  and k ! 0,1( ) . Condition (2.2.3) 
suggests a potential candidate for ! t( )  to be. One 
simple assignment is to let k = ! = 1 / 2,  namely, to 
select; 

 

which appeared in [1]. However, there is still much to 
be gained by choosing these stage sizes analytically. 
For example, dividing the 2l(t) test cases unevenly in 
accordance to the optimal fixed scheme, if the prior 
parameters are quite reliable [13]. More specific 
guidance with respect to some particular cases has 
been provided by Hardwick and Stout [5]. Regardless 
of the specification of l(t) and ! t( ) , first-order optimality 
of the three-stage sequential design is preserved, 
which will be shown by the following lemmas and 
theorem. 

Lemma 2.2.1 Let P3stgae be the three-stage 
sequential sampling scheme and (M, N) be the final 
allocation. Then, 

 

where; 
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Proof: From the third stage and (2.2.4), it is obvious 
that for sufficiently large t, 

 

which converges to C as a result of martingale 
convergence theorem.                        

Lemma 2.2.2 Under procedure P3stage, the following 
inequality holds for all sufficiently large t, 

 

Proof: From stage 1, on M̂ = l{ } , we should have 

tĈ
l,l / 2!

"
#
$ < l , so that; 

 

Next, on M̂ > l{ },t Ĉl,l / 2 ! t / 2 ! 2,for t ! 8 . Then, 

 

The result follows immediately.                       

Theorem 2.2 Let P3stage be the three-stage sampling 
scheme, if r>0, s> 0, then; 

 

       (2.2.5) 

as . 

Proof: As in the proof of Theorem 2.1, 

 

is equal to the sum of the following three terms: 
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                 (2.2.6a) 

    
(2.2.6b)

 

               
(2.2.6c)

 

Since M, N > 0 and r, s > 0, both terms in (2.2.6c) are 
bounded by a uniformly integrable martingale, UMVN, 
from above. Also, the procedure indicates that M > l(t) 
and l(t)!"  along with t as required by (2.2.2), so m 
must also approach infinity as t!" . As a result, 
(2.2.6c) will vanish by the dominated convergence 
theorem. By virtue of the following inequality: 

 

where  and  are clearly uniformly 
integrable, it follows that (2.2.6a) approaches zero as 
t! " . Finally, it directly follows from Lemma 2.2.1 that 
the random quantity within the expectation of (2.2.6b) 
converges to zero with probability one, that is, 

      

 

So as to claim that the expectation itself, i.e. (2.2.6b) 
also converges to zero, we still need to show that both 
terms: 

 

are uniformly integrable. To this end, we first establish 
the following inequality: 

 

Note that 
 
0 !" !1and 0 !# !1, then,  

 

It then follows from Lemma 2.2.2 that for sufficiently 
large t, we have: 

 

                =
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where the term in the second line is a non-negative 
sub-martingale, since 1/Ul and 1/ B

l

2  are both non-
negative sub-martingales. Then, the uniform 
integrability of U

M
B
N

2
t /M  follows from Doob’s 

inequality and dominated convergence theorem. The 
other term V

N
A
M

2
t / N  can be shown to be uniformly 

integrable in a similar fashion.                                      

2.3. Sampling Scheme Comparison 

In this section, the three-stage sequential sampling 
design will be shown to perform better than the optimal 
fixed design in the sense that the former incurred less 
Bayes risk than the latter, especially when t is large. 

Theorem 2.3 Let P3stage be the three-stage 
sequential sampling design and F0 be the optimal fixed 
design, then; 

   (2.2.7)
 

Proof: It follows easily from (2.1.6) and (2.2.5) that, 

 

 

           

and the result immediately follows from the Cauchy-
Schwarz inequality. A similar proof can be found in 
Rehab and Li [15], whose work also implies that the 
gain of efficiency of the three-stage design over the 
best fixed design should be no more than 50%.           

2.4. Monte Carlo Simulation 

The results of experimental comparisons between 
the three-stage sampling design and the optimal fixed 
sampling scheme as well as the first-order efficiency of 
three-stage sampling design are presented in Table 1 
and 2. We consider the case where the system 
consists of two components, or two sub-systems 
connected in series, with reliability !  and !  
respectively. Prior knowledge about the individual 
reliabilities are quantified by beta distribution, such that 

 
! ! Beta a0,b0( )," ! Beta c0,d0( ) . 

Table 1: The Bayes Risk Ratios of Three-Stage vs. 
Optimal Fixed (Various Prior Parameters, 10000 
Replications) 

a0 , b0( )  

c0 , d0( )  

Size (t) 

(1,1) 
(1,1) 

(0.5,0.01) 
(0.5,0.01) 

(0.5,0.01) 
(1,1) 

(1,0.05) 
(0.1,0.005) 

t = 60 0.935848 0.781562 0.977919 0.932582 

t = 80 0.908820 0.715508 0.967004 0.867259 

t = 100 0.888615 0.674085 0.967431 0.815990 

t = 200 0.857535 0.578334 0.941608 0.725076 

t = 400 0.849106 0.542225 0.935700 0.679830 

t = 600 0.848983 0.530122 0.934358 0.664879 

t = 800 0.847717 0.521657 0.931591 0.652924 

t = 1000 0.847176 0.517955 0.931344 0.652541 

t ! "  0.849783 0.512973 0.924828 0.649841 

 

Table 1 shows the ratio of the Bayes risk of the 
three-stage sampling design to the Bayes risk of the 
optimal fixed scheme. The table presents results for 
various total samples sizes, t, and different prior 
parameters. The last row indicates the limiting value of 
R(P3stage) when t becomes very large. Among all 
different settings, even with relative small sample sizes, 
the three-stage sampling scheme outperformed the 
optimal fixed scheme, just as what we would expect 
since the former procedure learns and refines the 
estimate during the testing process. This result can be 
confirmed by Theorem 2.3. 

Column 1 in the table shows scenarios with uniform 
or non-informative priors where a

0
= b

0
= c

0
= d

0
= 1 . 

From a practical point of view, it indicates that very little 
is known about the reliability of each component or 
sub-system. In this case, the three-stage sampling 
design still outperforms the best fixed scheme with their 
ratios of Bayes risk being less than 1. As t becomes 
large, the limits converge to values in the last row, 
which are all above 50%. 

Column 2 gives the case with informative and 
identical priors where a0 = c0 = 0.5, b0 = d0 = 0.01 . This 
choice represents an expected reliability of 0.998 for 
each component or sub-system. It is also a practical 
scenario, such as for highly reliable one-shot systems 
like missiles and rockets [4], or for software 
applications which are already in place. Apparently, we 
gain more by using the three stage sampling scheme 
over the best fixed scheme. As t goes to infinity, the 
limiting value gets very close to the best efficiency 
gain, 50%. 
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Column 3 resembles the case when a new 
component, which we know very little about, is 
introduced to an existing system, where 
a0 = 0.5, b0 = 0.01, c0 = d0 = 1 . Under these 
conditions, the three-stage sampling scheme still 
shows an improvement over the best fixed design. It is 
very interesting to see that the efficiency gain is not as 
good as the case with both uniform priors. One 
possible explanation is that the allocation scheme for a 
series system is collectively affected by information of 
both components, the uncertainty of one component 
may in turn reduce the faith about the other component 
and introduce extra risk to the estimation of the whole 
system. 

The last parameter configuration in column 4 
represents a choice of prior parameters where the 
expected reliability in both populations are believed to 
be equally high but we are more certain about the first 
component then the second, which is reflected by the 
difference of the prior variances. In this case, the three 
stage sampling scheme still performs much better than 
the best fixed scheme manifested by ratios listed in the 
last column. 

Table 2: The Excessive First-Order Bayes Risk Incurred 
by Three-Stage Design (Various Prior 
Parameters, 10000 Replications) 

a0 , b0( )  

c0 , d0( )  

Size (t) 

(1,1) 
(1,1) 

(0.5,0.01) 
(0.5,0.01) 

(0.5,0.01) 
(1,1) 

(1,0.05) 
(0.1,0.005) 

t = 60 0.003525 0.000369 0.003484 0.000609 

t = 80 0.003550 0.000283 0.002873   0.000469   

t = 100 0.003301 0.000230 0.002343 0.000381 

t = 200 0.002389 0.000119 0.001298 0.000199 

t = 400 0.001233 0.000065 0.000688 0.000103   

t = 500 0.001051 0.000049    0.000560   0.000083   

t = 600 0.000859 0.000041 0.000470   0.000072   

t = 800 0.000658 0.000031    0.000357 0.000054   

t = 1000 0.000534 0.000025 0.000289 0.000042   

Table 2 and Figure 2 both demonstrate the first-
order optimality of the three-stage sampling scheme by 
calculating and plotting the excess of first-order Bayes 
risk, which is defined as: 

 
Figure 2: The excess of bayes risk incurred by the three-stage sampling scheme (various cases of a0, b0, c0, d0, 10000 
replications). 
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with increasing total sample size, t. 

Four practical scenarios of prior parameters are 
considered separately as before and the corresponding 
excessive first-order Bayes risks all exhibit a trend of 
convergence towards zero, which agrees with Theorem 
3.2. With smaller increment of t, Figure 2 demonstrates 
such converging tendency more evidently. 

In addition, by comparing between column 1 and 3 
with column 2 and 4, one may also discover that the 
Bayes risk incurred by the three-stage sampling 
scheme converges faster with informative priors than 
without or only with partial information. 

3. APPLICATION II: RISK ASSESSMENT 
—NORMAL-NORMAL MODEL 

Suppose that we observe 
 
X ! N !, 1( ), Y ! N " , 1( )  

independently and are concerned with inference about 
the product of means, ! " . The problem was first 
recognized as the determination of an area of a 
rectangle based on measurements of length and width 
and was then introduced to some environmental 
applications, such as exposure assessment and risk 
modeling. For example, to assess the risk due to 
exposure to radiation or various pollutants, X can be 
defined to measure the dose per unit time, Y the 
number of time units during which an individual is 
exposed and are independent of X, and thus the total 
exposure is ! "  [16]. 

In the Bayesian framework with assumption of 
conjugate priors, the two parameters ! "  are assigned 
with independent normal prior distributions such as; 

 
! ! N µ, 1 / r( ) and " ! N v, 1 / s( )  

respectively, where µ, v !R, and r, s > 0 . 

Let the study proceed until a fixed total number of 
samples, t, have been observed. According to a 
sampling procedure, P, mt cases are randomly sampled 
from population X and nt sampled from Y, 
where mt+nt=t. The resulting Bayes risk now becomes: 

R P( ) = E
vn

t

2

mt + r
+

µm
t

2

nt + s
+

1

mt + r( ) nt + s( )

!
"
#

$#

%
&
#

'#
            (3.1.1) 

where µm
t

 denotes the posterior means of !  given 

X1, X2 , ..., Xm
t

, that is, 

        
(3.1.2)

 

Similarly, let vn
t

 be the posterior means of !  given 

Y1, ...,Yn
t

 then, 

          
 (3.1.3)

 

The observed value of µ
m
t

v
n
t

 is thus the estimate 
for the parameter of interest, ! " . 

3.1. Optimal Fixed Design 

Let m = m
t
,n = n

t
 and in any fixed sampling scheme, 

the allocation m,n are determined before any 
observation being collected, leading to the 
corresponding Bayes risk to be: 

         
(3.1.4) 

Similarly as in section 2.1, the Bayes risk, R(F), 
incurred by any fixed sampling scheme has an 
asymptotical lower bound specified as: 

 

                               

(3.1.5)

 

which, with sufficiently large t, can be attained by the 
following allocation: 

 

3.2. First-Order Optimal Sequential Sampling 
Design 

In this section, an asymptotic first-order lower bound 
for any sequential procedure Ps will be given first with a 
sketch of proof and the three-stage sequential 
sampling scheme will later be adopted again and 
justified to be first-order efficient both theoretically and 
through Monte Carlo simulations. Again, let M = mt and 
N = nt to indicate the allocation randomness.  
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Theorem 3.1 For any sequential procedure, Ps, 

    
(3.2.1)

 

Proof: The proof of Theorem 3.2 is analogous to 
the proof of Theorem 2.2 by replacing AM by µM, BN by 
vN, VM and UN both by 1, and follows directly from the 
key identity: 

 

                                    

A similar proof can also be found in Rekab [10].         

The three-stage sampling procedure P3stage follows 
a very similar structure that has been elaborated in 
section 2.2, regardless of distribution specifications. 
Details are not to be repeated here, except that the key 
ratio involved to determine the allocation at each stage 
is adjusted to: 

    
(3.2.2)

 

with µmt, vnt defined and evaluated by (3.1.2) and 
(3.1.3). For the sake of practicality, we will simply 
choose l(t) = t / 2 , and ! t( ) = t / 2  as sizes for the first 
two stages. 

Lemma 3.2.1 Let (M, N) be the final allocation given 
by P3stage, then, 

 

Proof: The proof is very similar to the proof of 
Lemma 2.2.1.             

Theorem 3.2 Let P3stage be three-stage sequential 
sampling design defined as above, if r > 0, s > 0 and µ 
and v are both finite, then; 

             
 (3.2.3)

 

as t!" . 

Proof: From the identity used for proving Theorem 
3.1, the quantity; 

 

can be rewritten as the sum of the following three 
terms: 

                       (3.2.4a) 

                        
(3.2.4b)

 

               (3.2.4c)
 

Since r > 0, s > 0, and 

 

It follows that (3.2.4c) will vanish. Also note that, 

 

!

 

where the last inequality follows from Doob’s inequality 
and the right-most bound is finite. Hence, (3.2.4a) also 
vanishes. Turning to the term (3.2.4b), by using Lemma 
3.2.1, it follows that: 

 

as t! " . Then, the only thing left to be checked is the 

uniform integrability of v
N

2
t /M and µM

2
t / N , which 

follows in the similar way as the proof for Theorem 2.2, 
as long as we can validate the following two relations: 

 

From Lemma 2.2.2, for sufficiently large t and under 
procedure P3stage, it can be easily established that: 

 

The other relation can be shown in the same 
fashion. A similar proof appears in Rekab [10] for a 
two-stage procedure.             
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3.3. Sampling Scheme Comparison 

In this section, the three-stage sequential sampling 
scheme will be shown to outperform the optimal fixed 
design in terms of the Bayes risk, especially when t  
is large. 

Theorem 3.3 Let P3stage be the three-stage design 
and F0 be the optimal fixed design, then; 

              
 (3.2.5)

 

Proof: It follows easily from (3.1.5) and (3.2.3) that, 

 

=
 

=  

and the result follows easily from the Jensen’s 
Inequality for concave functions.                          

3.4. Monte Carlo Simulation 

The results of experimental comparisons between 
the three-stage sampling design and the optimal fixed 
sampling scheme as well as the first-order efficiency of 
three-stage sampling design will be presented in  
Table 3 and 4. We consider the case of assessing the 
risk due to exposure to certain type of pollutant. Let Xi 

be the dose of the pollutant per unit time for the ith 
subject, and Yi be the number of time units during 
which the ith subject is exposed. 

Table 4: The Excessive First-Order Bayes Risk Incurred 
by Three-Stage Design (Various Initial 
Conditions, 10000 Replications) 

Prior 

Size  
µ = v 
r = s 

µ = 10v 
r = s 

µ = v 
r = 10s 

µ = 0.1v 
r = 10s 

t = 60 0.192910 1.676767 0.313537 0.822316 

t = 80 0.053572 1.334689 0.012233   0.263540 

t = 100 0.071821 0.025763 0.012406   0.075005 

t = 200 0.069218 0.019987 0.009390 0.018621 

t = 400 0.022048 0.008023 0.004869 0.008148 

t = 600 0.006256 0.005701 0.002442 0.002258 

t = 800 0.003215 0.005148 0.001369 0.003702 

t = 1000 0.001381 0.001233 0.000150 0.000142 

 

Without loss of generality, we assume 

 
X
i
! N !,1( ), Yi ! N " ,1( )  and they are independent 

random variables. Prior knowledge about the expected 
dose of pollutant and exposing time are quantified by 
normal distributions, such that, 

 
! ! Normal µ,1 / r( ), " ! Normal v,1 / s( ) . 

where r, s are the precisions of !  and ! , respectively. 

Table 3 shows the ratio of Bayes risk of the three-
stage design to that of the optimal fixed scheme. The 
table presents results for various prior parameters and 
different total samples sizes, t, including the limiting 
case as t approaches infinity. 

The first column of Table 3 is a case of equal priors, 
such that µ = v, r = s. The second column simulates the 
case where µ/v is much larger than 1, while r/s = 1. In a 
practical sense, the first two scenarios indicate that we 
equally believe in how the two factors, pollutant 
concentration and contact time, will affect overall 
exposure, but blame more on the pollutant 
concentration in the second scenario. In the third 
column, with r/s being large, we seem to be surer about 
the effect from the pollutant concentration. The last 
scenario, where µ/v gets very small but r/s is relatively 
large, indicates that we are not very concerned about 
the pollutant concentration to be the key factor which 
changes the level of exposure. 

Table 3: The Bayes Risk Ratios of Three-Stage vs. 
Optimal Fixed (Various Prior Parameters, 
10000 Replications) 

 Prior 

Size  
µ = v 
r = s 

µ ! 10v  
r = s 

µ = v 
µ ! 10s  

µ ! 0.1v  
r ! 10s  

t = 60 0.895004 0.999035 0.951571 0.931777 

t = 80 0.899987 0.913864 0.905650 0.968722 

t = 100 0.967188 0.979956 0.905229 0.890654 

t = 200 0.992475 0.946160 0.901752 0.885033 

t = 400 0.986781 0.966606 0.902478 0.853707 

t = 600 0.895689 0.930659 0.927050 0.874488 

t = 800 0.972394 0.973464 0.905229 0.861526 

t = 1000 0.966911 0.961724 0.897031 0.861428 

t!"  0.866811 0.964907 0.885927 0.844912 
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Among all different scenarios listed in Table 3, even 
with relatively small sample sizes, the three-stage 
design outperformed the optimal fixed scheme. 
Asymptotically, there is also gain of efficiency of the 
three-stage design over the optimal fixed scheme, 
which is consistent with the result of Theorem 3.3. 

Table 4 and Figure 3 both demonstrate the first-
order optimality of the three-stage sampling scheme by 
calculating and plotting the excess of first-order Bayes 
risk, which is defined as: 

 

with growing total sample size, t. 

Four practical scenarios of prior parameters are 
considered separately as before and the corresponding 
excessive first-order Bayes risks all exhibit a nice trend 
of convergence towards zero, which is even more 
evident in Figure 3. 

CONCLUSION 

The Beta-Binomial model, a typical case used for 
discrete data; and the Normal-Normal model, a popular 

case for continuous data, have been discussed in the 
paper in the context of two application problems. The 
three-stage sequential sampling scheme, which is 
shown to be first-order efficient both theoretically and 
through Monte Carlo simulations, also turns out to be 
practically implementable. The three-stage sampling 
design has the potential to be adapted to solve more 
problems which involves distributions from one-
parameter exponential family. Furthermore, to achieve 
better accuracy and higher efficiency, sequential 
sampling scheme of second-order optimality will be of 
interest for the future study. 
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