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Mode-I Crack Problem in Generalized Thermo-microstretch with 
Harmonic Wave under Three Theories  

Khaled Lotfy Al-Azab* 

Department of Mathematics, Faculty of Science, Zagazig University, Egypt 
Abstract: A general model of the equations of generalized thermo-microstretch for an infinite space weakened by a finite 
linear opening Mode-I crack are solving. The material is homogeneous isotropic elastic half space. The crack is 
subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity 
theories, using mathematical analysis with the purview of the Lord-Şhulman (LS involving one relaxation time) and 
Green-Lindsay (GL includes two relaxation times) theories with respect to the classical dynamical coupled theory (CD). 
The harmonic wave method has been used to getting the exact expression of Normal displacement, Normal stress force, 
couple stresses, microstress and temperature distribution. The variations of the considered fields with the horizontal 
distance are explained graphically. A comparison also is made between the three theories and for different depths. 
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1. INTRODUCTION 

The linear theory of elasticity is of paramount 
importance in the stress analysis of steel, which is the 
commonest engineering structural material. To a lesser 
extent, linear elasticity describes the mechanical 
behavior of the other common solid materials, e.g. 
concrete, wood and coal. However, the theory does not 
apply to the behavior of many of the new synthetic 
materials of the clastomer and polymer type, e.g. 
polymethyl- methacrylate (Perspex), polyethylene and 
polyvinyl chloride. The linear theory of micropolar 
elasticity is adequate to represent the behavior of such 
materials. For ultrasonic waves i.e. for the case of 
elastic vibrations characterized by high frequencies and 
small wavelengths, the influence of the body 
microstructure becomes significant, this influence of 
microstructure results in the development of new type 
of waves are not in the classical theory of elasticity. 
Metals, polymers, composites, solids, rocks, concrete 
are typical media with microstructures. More generally, 
most of the natural and manmade materials including 
engineering, geological and biological media possess a 
micro-structure. Eringen and Şuhubi [1] and Eringen [2] 
developed the linear theory of micropolar elasticity. 
Othman [3] studied the relaxation effects on thermal 
shock problems in elastic half space of generalized 
magneto-thermoelastic waves under three theories. 
Othman [4] construct a model of the two-dimensional 
equations of generalized magneto-thermoelasticity with 
two relaxation times in an isotropic elastic medium with 
the modulus of elasticity being dependent on the 
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reference temperature. Eringen [5] introduced the 
theory of microstretch elastic solids. This theory is a 
generalization of the theory of micropolar elasticity [2,6] 
and a special case of the micromorphic theory. The 
material points of microstretch elastic solids can stretch 
and contract independently of their translations and 
rotations. The microstretch continua is used to 
characterize composite materials and various porous 
media [7]. The basic results in the theory of micro 
stretch elastic solids were obtained in the literature  
[8-11].  

The theory of thermomicrostretch elastic solids was 
introduced by Eringen [7]. In the frame-work of the 
theory of thermomicrostretch solids Eringen 
established a uniqueness theorem for the mixed initial-
boundary value problem. The theory was illustrated 
through the solution of one dimensional waves and 
compared with lattice dynamical results. The 
asymptotic behavior of solutions and an existence 
result were presented by Bofill and Quintanilla [12]. A 
reciprocal theorem and a representation of Galerkin 
type were presented by De Cicco and Nappa [13]. De 
Cicco and Nappa [14] extended a linear theory of 
thermomicrostretch elastic solids that permits the 
transmission of heat as thermal waves at finite speed. 
The theory is based on the entropy production 
inequality proposed by Green and Laws [15]. In [14], 
the uniqueness of the solution of the mixed initial-
boundary-value problem is also investigated. The basic 
results and an extensive review on the theory of 
thermo-microstretch elastic solids can be found in the 
book of Eringen [8]. The coupled theory of 
thermoelasticity has been extended by including the 
thermal relaxanon time in the constitutive equations by 
Lord and Shulman [16] and Green and Lindsay [17]. 
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These theories eliminate the paradox of infinite velocity 
of heat propagation and are termed generalized 
theories of thermoelasticity.  

Othman and Lotfy [18] studied two-dimensional 
problem of generalized magneto-thermoelasticity under 
the effect of temperature dependent properties. 
Othman and Lotfy [19] studied the effect of magnetic 
field and rotation of the 2-D problem of a fiber-
reinforced thermoelastic under three theories with 
influence of gravity. Othman and Lotfy [20] studied the 
plane waves in generalizedthermo-microstretch elastic 
half-space by using a general model of the equations of 
generalized thermo-microstretch for a homogeneous 
isotropic elastic half space. Othman and Lotfy [21] 
studied the generalized thermo-microstretch elastic 
medium with temperature dependent properties for 
different theories. Othman and Lotfy [22] studied the 
effect of magnetic field and inclined load in micropolar 
thermoelastic medium possessing cubic symmetry 
under three theories. The normal mode analysis was 
used to obtain the exact expression for the temperature 
distribution, thermal stresses, and the displacement 
components.  

In the recent years, considerable efforts have been 
devoted the study of failure and cracks in solids. This is 
due to the application of the latter generally in industry 
and particularly in the fabrication of electronic 
components. Most of the studies of dynamical crack 
problem are done using the equations of coupled or 
even uncoupled theories of thermoelasticity [23-31]. 
This is suitable for most situations where long time 
effects are sought. However, when short time are 
important, as in many practical situations, the full 
system of generalized thermoelastic equations must be 
used [16].  

The purpose of the present paper is to obtain the 
normal displacement, temperature, normal force stress, 
and tangential couple stress in a microstretch elastic 
solid. The normal mode analysis used for the problem 
of generalized thermo-microstretch for an infinite space 
weakened by a finite linear opening Mode-I crack is 
solving for the considered variables. The distributions 
of the considered variables are represented 
graphically. A comparison is carried out among the 
temperature, stresses and displacements as calculated 
from the generalized thermoelasticity (L-S), (G-L) and 
(CD) theories for the propagation of waves in semi-
infinite microstretch elastic solids. 

2. FORMULATION OF THE PROBLEM 

Following Eringen [3], Green and Lindsay [15] and 
Lord and Şhulman [16], the constitutive equations and 
field equations for a linear isotropic generalized 
thermo-microstretch elastic solid in the absence of 
body forces are obtained. We consider Cartesian 
coordinate system 

 
(x, y, z)  having origin on the surface 

 
y = 0  and z-axis pointing vertically into the medium, 
the region G given by 
G =  (x, y, z) | , ! " < x < " ,! " < z < "{ }  with a crack 

on the x-axis, x ! a , is considered. The crack surface 
is subjected to a known temperature and normal 
stresses distributions. There are many types of crack 
and this study will be devoted to Mode-I shown in 
Figure 1. 

 
Figure 1: Displacement of an external Mode-I crack. 

 The fundamental system of field equations consists 
of the equations of motion for a linear, isotropic 
generalized thermo-microstretch elastic soiled medium 
are given by  
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The equation of heat conduction; 



36     Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 1 Khaled Lotfy Al-Azab 

 

K!2T = nC
E

(n
1
+ n

0

"

" t
)T

.
+

r#T
0

(n
1
+ n

0
n

0

"

" t
)e

.
+ r#

1
T

0

"#*

"t

         (4) 

The constitutive law for the theory of generalized 
thermoelasticity with two relaxation times; 
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The field equations and constitutive relations for 
thermo-microstretch generalized thermoelastic medium  
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The relation between strain-displacement: 
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The state of plane strain parallel to the xz  -plane is 
defined by; 

 
u1= u(x,z,t) ,
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The field equations (1)-(4) reduce to;  
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where; 
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The constants ã̂  and 
1
ã̂  depend on mechanical as well 

as the thermal properties of the body and the dot 
denote the partial derivative with respect to time.  

Equations (10)-(14) are the field equations of the 
generalized thermo-microstretch elastic solid, 
applicable to the (L-S) theory, the (G-L) theory, as well 
as the classical coupled theory (CD), as follows: 

1. The equations of the coupled thermo-
microstretch (CD) theory, when 

 
n0 = 0, n1 = 1, !0 = "0 = 0        (16) 

Eqs. (10), (11), (13) and (14) has the form; 
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The constitutive relation can be written as; 
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2. Lord-Shulman (L-S) theory, when; 

n1 = n0 = 1, v0 = 0, ! 0 > 0        (28) 

Eqs (10), (11) and (13) are the same as Eqs (17), (18) 
and (19) and Eq. (14) has the form; 
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3. Green-Lindsay (G-L) theory, when; 

n1 = 1, n0 = 0 , !0 " # 0 > 0        (30) 

Eqs (10), (11) and (13) remain unchanged and Eq. (14) 
has the form; 
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4. The corresponding equations for the generalized 
micropolar thermo-elasticity without stretch can be 
obtained from the above mentioned cases by taking: 
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For convenience, the following non-dimensional 
variables are used: 
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Using Eqs. (32), Eqs. (10)-(14) become (dropping 
the dashed for convenience); 
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Assuming the scalar potential functions 
 
!(x,z, t) and 

 
!(x,z, t)  defined by the relations in the non-
dimensional form: 

 

u =
!"

!x
+

!#

!z
, 

xz
w

!

!
"

!

!
=

#$ .         (38) 

Using (38) in Eqs. (33)-(37), we obtain. 
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where; 
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The solution of the considered physical variables 
can be decomposed in terms of normal mode as the 
following form: 
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the functions ù  is a complex and a  is the wave 
number in the z-direction and,  

Using Eq. (45), then Eqs. (39)–(43) become 
respectively; 
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Eliminating 
 
!2,"  between Eqs. (47) and (48), we get 
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The solution of Eqs. (59) and (60), has the form  
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Using Eqs. (67)- (71) into Eqs. (46) and (50) we get 
the following relations 
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where,  
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a

)Ak(
a
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3
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bn
*
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 g1kn
2
+ g2

g3kn
2
+ g4

, n = 3,4,5 ,       (76) 

 

cn
*
=

 g3kn
4
+ g5kn

2
! g6

A2 (g3kn
2
+ g4)

, n = 3,4,5 .       (77) 

4. APPLICATION 

The plane boundary subjects to an instantaneous 
normal point force and the boundary surface is 
isothermal, the boundary conditions at the vertical plan 

0y =  and in the beginning of the crack at 0x =  are 
! zz = " p(x), x < a  T = f (x), x < a  and 
!T

!z
= 0 x > a . 

!xz = 0, " # < x < # ,       (78) 

mxy = 0,  ! " < x < " , 

!z = 0 " # < x < # , 

Using (32), (38), (39)-(43) with the non-dimensional 
boundary conditions and using (67), (69), (72)-(74), we 
obtain the expressions of displacement components, 
force stress, coupled stress and temperature 
distribution for microstretch generalized thermoelastic 
medium as follows:  
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where; 

 
s1 = iak1(f2 ! f3) , 

 
s2 = iak2(f2 ! f3) , 

* 2 2 *
3 1 3 2 3 3 3 0s f b a f f k c (1 )= ! + ! + " # , 

 
s4 = f1b4

*
! a2 f2 + f3k4

2
! c4

*(1+ "0#) , 

 
s5 = f1b5

*
! a2 f2 + f3k5

2
! c5

*(1+ "0#) ,  
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Applying the boundary conditions (78) at the surface 
x = 0  of the plate, we obtain a system of five 
equations. After applying the inverse of matrix method, 
we obtain the values of the five constants 

 
M j, j= 1,2 , 

and 
 
Mn, n = 3,4,5 . Hence, we obtain the expressions of 

displacements, force stress, couple stress and 
temperature distribution for microstretch generalized 
thermoelastic medium. 

5. NUMERICAL RESULTS AND DISCUTIONS  

In order to illustrate our theoretical results obtained 
in preceding section and to compare these in the 
context of various theories of thermoelasticity, we now 
present some numerical results. In the calculation 
process, we take the case of copper crystal as material 
subjected to mechanical and thermal disturbances for 
numerical calculations consider the material medium as 
that of copper. Since, ù  is the complex constant then 
we taken ! =!

0
+ i" . The other constants of the 

problem are taken as !0 = "2; # = 1 and a=1 . 

The results are shown in Figures 2–15. The graph 
shows the three curves predicted by different theories 
of thermoelasticity. In these figures, the solid lines 
represent the solution in the Coupled theory, the dotted 
lines represent the solution in the generalized Lord and 
Shulman theory and dashed lines represent the 
solution derived using the Green and Lindsay theory. 
We notice that the results for the temperature, the 
displacement and stresss distribution when the 
relaxation time is including in the heat equation are 
distinctly different from those when the relaxation time 
is not mentioned in heat equation, because the thermal 
waves in the Fourier's theory of heat equation travel 
with an infinite speed of propagation as opposed to 
finite speed in the non-Fourier case. This demonstrates 
clearly the difference between the coupled and the 
generalized theories of thermoelasticity. 

For the value of z, namely z = 0.1, were substituted 
in performing the computation. It should be noted 
(Figure 2) that in this problem, the crack's size, x is 
taken to be the length in this problem so that 0 ! x ! 3 , 
z = 0 represents the plane of the crack that is 
symmetric with respect to the z -plane. It is clear from 
the graph that T  has maximum value at the beginning 
of the crack ( x = 0 ), it begins to fall just near the crack 
edge ( x = 3 ), where it experiences sharp decreases 
(with maximum negative gradient at the crack's end). 
The value of temperature quantity converges to zero 
with increasing the distance x.  
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Figure 2: Variation of temperature distribution T with different 
theories. 

Figure 3, the horizontal displacement, u , begins 
with decrease then smooth increases again to reach its 
maximum magnitude just at the crack end. Beyond it 
u  falls again to try to retain zero at infinity. Figure 4, 

the vertical displacementw , we see that the 
displacement component w  always starts from the 
zero value and terminates at the zero value. Also, at 
the crack end to reach minimum value, beyond 
reaching zero at the double of the crack size (state of 
particles equilibrium). 
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Figure 3: Variation of displacement distribution u with 
different theories. 
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Figure 4: Variation of displacement distribution w with 
different theories. 

The displacements u  and w  show different 
behaviours, because of the elasticity of the solid tends 
to resist vertical displacements in the problem under 
investigation. Both of the components show different 
behaviours, the former tends to increase to maximum 
just before the end of the crack. Then it falls to a 
minimum with a highly negative gradient. Afterwards it 
rises again to a maximum beyond about the crack end.  

The stresse component, ! zz  reach coincidence with 
negative value (Figure 5) and satisfy the boundary 
condition at x = 0 , reach the maximum value near the 
end of crack ( x ! 3 ) and converges to zero with 
increasing the distance x. Figure 6, shows that the 
stress component ! xz  satisfy the boundary condition at 
x = 0 and had a different behaviour. It decreases in the 
start and start decreases (maximum) in the context of 
the three theories until reaching the crack end. These 
trends obey elastic and thermoelastic properties of the 
solid under investigation.  
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Figure 5: Variation of stress distribution !zz  with different 
theories. 
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Figure 6: Variation of stress distribution Oxz  with different 
theories. 
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Figure 7: Variation of tangential couple stress mxy  with 
different theories. 

Figure 7, the tangential coupled stress 
 
mxy  

satisfies the boundary condition at x = 0 . It decreases 
in the start and start increases (maximum) in the 
context of the three theories until reaching the crack 
end. The values of microstress for !z  satisfy the 
boundary condition at x = 0 , begins with increase then 
decreases again to reach its minimum magnitude just 
near the crack end, beyond reaching zero at the double 
of the crack size (state of particles equilibrium), as 
depicted in Figure 8. 

Figure 9-15 show the comparison between the 
temperature T, displacement components u, w , the 
force stresses components ! zz , ! xz , the tangential 

coupled stress xym  and the microstress !z , the case 

of different three values of z, (namely z= 0.1, z=0.2 and 
z=0.3) under GL theory. It should be noted (Figure9) 
that in this problem. It is clear from the graph that T  
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has maximum value at the beginning of the crack 
( x = 0 ), it begins to fall just near the crack edge 
( x = 3 ), where it experiences sharp decreases (with 
maximum negative gradient at the crack's end). Graph 
lines for both values of y show different slopes at crack 
ends according to y-values. In other words, the 
temperature line for z = 0.1 has the highest gradient 
when compared with that of z = 0.2 and z = 0.3 at the 
first of the range. In addition, all lines begin to coincide 
when the horizontal distance x is beyond the double of 
the crack size to reach the reference temperature of 
the solid. These results obey physical reality for the 
behaviour of copper as a polycrystalline solid.  
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Figure 8: Variation of microstress 

 
!!ez  with different theories. 
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Figure 9: Variation of temperature distribution T for different 
vertical distances, under GL theory. 

Figure 10, the horizontal displacement u, despite 
the peaks (for different vertical distances z=0.1, z=0.2 
and z=0.3) occur at equal value of x, the magnitude of 
the maximum displacement peak strongly depends on 
the vertical distance y. it is also clear that the rate of 

change of u increases with increasing y as we go 
farther apart from the crack. On the other hand, Figure 
11 shows atonable increase of the vertical 
displacement, w , near the crack end to reach 
minimum value beyond x = 3  reaching zero at the 
double of the crack size(state of particles equilibrium).  
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Figure 10: Variation of displacement distribution u for 
different vertical distances, under GL theory. 
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Figure 11: Variation of displacement distribution w for 
different vertical distances, under GL theory. 

Figure 12, the vertical stresses ! zz Graph lines for 
both values of z show different slopes at crack ends 
according to z-values. In other words, the 
! zz component line for z = 0.1 has the highest gradient 
when compared with that of z = 0.2 and z = 0.3 at the 
edge of the crack. In addition, all lines begin to coincide 
when the horizontal distance x is beyond the double of 
the crack size to reach zero after their relaxations at 
infinity. Variation of y has a serious effect on both 
magnitudes of mechanical stresses. These trends obey 
elastic and thermoelastic properties of the solid under 
investigation. Figure 13, shows that the stress 
component ! xz  satisfy the boundary condition, the line 
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for z = 0.3 has the highest gradient when compared 
with that of z = 0.2 and z= 0.1 in the range 0 ! x ! 2.5 , 
the line for z = 0.1 has the highest gradient when 
compared with that of z = 0.2 and z= 0.3 in the range 
2.5 ! x ! 5  and converge to zero when x > 5 . These 
trends obey elastic and thermoelastic properties of  
the solid.  
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Figure 12: Variation of stress distribution !O zz  for different 

vertical distances, under GL theory. 
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Figure 13: Variation of stress distribution Oxz  for different 
vertical distances, under GL theory. 

Figure 14, the tangential coupled stress 
 
mxy  it 

decreases in the start and start increases (maximum) 
in the context of the three values of z  until reaching the 
crack end, for z = 0.3 has the highest gradient when 
compared with that of z = 0.2 and z= 0.1 at the edge of 
the crack. All lines begin to coincide when the 
horizontal distance x is beyond the edge of the crack. 
Figure 15, shown the values of microstress for !z  it 
increases in the start and start decreases (minimum) in 
the context of the three values of z  until reaching 
nearly the crack end, for z = 0.3 has the highest 
gradient when compared with that of z = 0.2 and z= 0.1 

at the edge of the crack. All lines begin to coincide 
when the horizontal distance x is beyond the double of 
the crack size to reach zero after their relaxations  
at infinity. 
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Figure 14: Variation of tangential couple stress mxy  for 
different vertical distances, under GL theory. 
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Figure 15: Variation of microstress 

 
!!ez  for different vertical 

distances, under GL theory. 

CONCLUSIONS  
The models of generalized thermo-microstretch for 

an infinite space weakened by a finite linear opening 
Mode-I crack is solving. The physical quantities are 
given analytically and illustrated graphically by Normal 
mode method. The effects of the thermal relaxation 
time (three theories), the case of different three values 
of the depth are discussed. The following conclusions 
can be made: 

1. The curves in the context of the (CD), (L-S) and 
(G-L) theories decrease exponentially with 
increasing x, this indicate that the thermoelastic 
waves are unattenuated and nondispersive, 
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where purely thermoelastic waves undergo both 
attenuation and dispersion. 

2. The presence of microstretch plays a significant 
role in all the physical quantities. 

3. The curves of the physical quantities with (L-S) 
theory in most of figures are lower in comparison 
with those under (G-L) theory, due to the 
relaxation times. 

4. Analytical solutions based upon normal mode 
analysis for themoelastic problem in solids have 
been developed and utilized.  

5. A linear opening mode-I crack has been 
investigated and studied for copper solid. 

6. Temperature, radial and axial distributions were 
estimated at different distances from the crack 
edge. 

7. The stresses distributions, the tangential coupled 
stress and the values of microstress were 
evaluated as functions of the distance from the 
crack edge. 

8. Crack dimensions are significant to elucidate the 
mechanical structure of the solid. 

9. Cracks are stationary and external stress is 
demanded to propagate such cracks. 

10. It can be concluded that a change of volume is 
attended by a change of the temperature while 
the effect of the deformation upon the 
temperature distribution is the subject of the 
theory of thermoelasticity. 

11. The value of all the physical quantities 
converges to zero with an increase in distance y 
and All functions are continuous. 

NOMENCLATURE 

!, µ  Lame's constants ( ! = 7.76"10
10

N /m
2
,µ = 3.86 "10

10
N /m

2 

! = 7.76"10
10

N /m
2
,µ = 3.86 "10

10
N /m

2 ). 

!  Density ( ! = 8954 kgm
"1 ). 

 
C

E
 Specific heat at constant strain 

(CE = 383.1 J kg
!1
K

!1
. ) 

v Poisson’s ratio. 

t Time. 

 
!

0
,v

0
 Relaxation times. 

T  Absolute temperature. 

! ij  Components of stress tensor. 

eij  Components of strain tensor. 

 
u

i
 Components of displacement vector. 

 K  Thermal conductivity 
  (K = 0.6!10

"2
cal / cm sec) . 

 J  Current density vector. 

!  Rotation vector.  

 
T

0
 Reference temperature chosen so that 

T !T0

T0

<1 ( T0 = 293K ). 

 
!

*  The scalar microstretch. 

mij  Couple stress tensor. 

 
!

i

*  First moment tensor.  

 
!ij  Kroneker delta. 

!ijr  The alternate tensor. 

e  Dilatation. 

! t  Coefficients of linear thermal expansions 

(!t = 1.78"10
#5

K
#1 ). 

k,! ,",#   Micropolar constants. 

 
!0, "0,"1

  Microstretch elastic constants. 
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