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Abstract: We study a nonlinear integral equation of Volterra type in the Banach space of real functions defined and 
continuous on a bounded and closed interval. Using a technique associated with measure of noncompactness we prove 
the existence of the nondecreasing solutions to a nonlinear integral equations of Volterra type in C [0, 1]. We give also 
one example satisfying the conditions of our main result but not satisfying the conditions of the main result in [1]. 

Keywords: Nonlinear volterra integral equations, measure of noncompactness, fixed point theorem. 

1. INTRODUCTION 

Integral equations arise naturally in applications of 
real world problems [2, 3, 6-9]. The theory of integral 
equations has been well developed with the help of 
various tools from functional analysis, topology and 
fixed-point theory. 

The aim of this paper is to investigate the existence 
of nondecreasing solutions of an integral equation of 
Volterra type. Equations of such kind contain, among 
others, integral equations of convolution type. Our 
results will be established using measure of 
noncompactness defined in [5]. 

The main tool used in our investigation is the 
technique of measure of noncompactness which is 
frequently used in several branches of nonlinear 
analysis [4, 6, 7]. We will apply the measure of 
noncompactness defined in [5] in proving the existence 
of nondecreasing solutions to a nonlinear integral 
equation of Volterra type. 

The results of this paper generalize and complete 
the results obtained earlier in the paper [1]. 

2. NOTATION AND AUXILARY FACTS 

Assume that E is real Banach space with the 
norm  and the zero element 0. Denote by B(x,r) the 
closed ball centered at x and with radius r and by Br the 
ball B(0,r). If X is nonempty subset of E we denote by 
X , Conv X the closure and the closed convex closure 
of X, respectively. 

The symbols !X  and X+Y we denote the usual 
algebraic operations on sets. Finally, let us denote by 
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ME the family of nonempty bounded subsets of E and 
by NE its subfamily consisting of all relatively compact 
sets. 

Definition 2.1 (See [4]). A function µ :M
E
! 0,")[  

is said to be a measure of noncompactness in the 
space E if it satisfies the following conditions: 

1. The family ker µ={X ∈ ME : µ (X)=0} ≠ ∅ and  
ker µ ⊂ NE. 

2. X ⊂ Y ⇒ µ (X) ≤ µ (Y). 

3. µ X( ) = µ ConvX( ) = µ X( )  

4. 
µ !X + 1" !( )Y( ) # !µ X( ) + 1" !( ) µ Y( ),

for ! $ 0,1[ ].
 

5. If X
n{ }

n  is a sequence of closed sets from ME 
such that 
Xn+1 ! Xn for n = 1, 2, ... and if limn"#

µ Xn( ) = 0  

then the set X
!
="

n=1

!
X
n

 is nonempty. 

The family ker µ described above is called the 
kernel of measure of noncompactness µ. Further facts 
concerning measure of noncompactness and their 
properties may be found in [4]. 

Now, let us suppose that M is nonempty subset of a 
Banach space E and the operator T: M !E is 
continuous and transforms bounded sets onto bounded 
ones. We say that T satisfies the Darbo condition (with 
constant k ! 0 ) with respect to a measure of 
noncompactness µ if for any bounded subset X of M 
we have µ (TX) !  kµ(X). 

If T satisfies the Darbo condition with k < 1 then it is 
called a contraction with respect to µ. 

For our purposes we will only need the following fixed 
point theorem [4]. 



Selected Phenomena of Spontaneous Electric Noise Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 1      47 

Theorem 2.1. Let Q be a nonempty, bounded, 
closed and convex subset of the Banach space E and 
µ a measure of noncompactness in E. Let F: Q !Q be 
a contraction with respect to µ. Then F has a fixed point 
in the set Q. 

Remark 1. Under the assumptions of the above 
theorem it can be shown that, the set Fix F of fixed 
points of F belonging to Q is a member of ker µ. 

Let C[0,1] denote the space of all real functions 
defined and continuous on the interval [0,1]. For 
convenience, we write I=[0,1] and C(I)=C[0,1]. The 
space C(I) is furnished with standard norm 
x = max x t( ) : t !I{ } . Next, we recall the definition of a 

measure of noncompactness in C(I) which will be used 
in the Section 3. This measure was introduced and 
studied in the paper [5]. 

Fix a nonempty and bounded subset X of C(I). For 
! > 0 and x "X  denote by ! x,"( )  the modulus of 
continuity of x defined by 

! x,"( ) = sup x t( )# x s( ) : t,s "I and t # s $ %{ } .
 

Furthermore, let us put 

! X,"( ) = sup ! x,"( ) : x #X{ }  

and 

!
0
X( ) = lim

"#0
! X,"( ) . 

Next, let us define the following quantities: 

i(x) = sup x s( )! x t( ) ! x s( )! x t( )"# $% : t,s &I and t ' s{ }  

and 

i(X)= sup i x( ) : x !X{ } . 

Observe that i(x)=0 if and only if all functions 
belonging to X are nondecreasing on I. Finally, let us 
define µ(X) as 

µ X( ) =!
0
X( ) + i X( ) .       (2.1) 

It can be shown [5] that the function µ is a measure 
of noncompactness in the space C(I). Morever, the 
kernel ker µ consists of all sets X belonging to MC(I) 
such that all functions from X are equicontinuous and 
nondecreasing on the interval I. 

3. MAIN RESULT 

In this section, we consider the following nonlinear 
integral equation of Volterra type 

x t( ) = a ! t( )( ) + Tx( ) " t( )( )

f # t, s( )( )$ x g s( )( )( )
0

% t( )

& ds, t ' I = [0,1].
     (3.1) 

The functions ! t( )," t( ),# t( ), g t( ),a t( ), f u( ),$ t, s( ),% u( )and Tx( ) t( ) 
! u( ) and Tx( ) t( )  are given while x=x(t) is an unknown 
function. This equation will be examined under the 
following assumptions: 

(i) ! ,",# : I$ I  continuous and nondecreasing 
functions on I and g: I ! I continuous function. 

(ii) a!C(I) and it is nondecreasing and 
nonnegative on the interval I. 

(iii) 
 
! : I " I# !  is continuous on I ! I  and the 

function t!" t,s( )  is nondecreasing for each s ! I .  
(iv) 

 
f : Im!." !

+
 is a continuous and nondecreasing 

function on compact set Im ! . 

(v)  
! :!" !  is a continuous function such that 

 
! :!

+
" !

+
. 

(vi) The operator T: C(I) !  C(I) is continuous and T 
is a positive operator, i.e. Tx ! 0 if x ! 0 . 

Also, there exists the nonnegative costants c, d and 
p>0 such that Tx( ) t( ) !  c + d x

p  for each 

x !C I( ) and t ! I . 

(vii) There exists ro>0 such that the inequality 
a !( ) + c + dr

0

p( ) f M" ,r0
# ro  is satisfied where 

M! ,r0
= max ! u( ) :u " #r

o
, r
o[ ]{ } .  

(viii) The operator T satisfies the inequality 
µ TX( ) !"µ X( )  

Hypothesis (i), (ii), (iii), (iv), (v), (vi), (vii) and (viii) in 
main result above should be on the same vertical line 
as below: 

on B
r
0

+
= x !B

r
0
: x t( ) " 0, t ! I{ }  for the measure of 

noncompactness µ defined by (2.1) with a constant !  
such that ! f M" ,r

0
< 1 . 

Then, we have the following theorem. 

Theorem 3.1. Under the assumptions (i)-(viii) the 
equation (3.1) has at least one solution x=x(t) which 
belongs to the space C(I) and is nondecreasing on the 
interval I. 
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Proof. Let us consider two operators A, B defined 
on the space C(I) by 

Ax( ) t( ) = a ! t( )( ) + Tx( ) " t( )( ) f # t,s( )( )
0

$ t( )

% & x g s( )( )( )ds
 

and 

Bx( ) t( ) = f ! t, s( )( )
0

" t( )

# $ x g s( )( )( )ds . 

Firstly, we prove that if x !C(I )  then Ax !C(I). To 
do this it is sufficient to show that if x !C I( )  then 
Bx !C(I ).Fix !> 0,  let x !C(I )  and t

1
,t
2
!I  such that 

t
1
! t

2
 and t

2
! t

1
" # . Then, 

 

 

Since f is continuous on compact region, there 
exists f . Therefore, if we denote  

 

 

and 

 
then we get the following inequality 

 

 
Now, in virtue of the uniform continuity of the 

function fo! on IxI  and uniform continuity of the 
function !  on I we have that  and 

. Thus  and 
consequently, . 

Furthermore, for each  we have 

 

 

. 

Hence, 

 

Thus, if  then we obtain from assumption (vii) 

that . 

Consequently, the operator A transforms the ball 
 into itself. 

Now, we will prove that A is continuous on . To 
do this let us take  sequence in  such that 

 in this case we show that . In fact, for 
each  we have  

 

 

 

In virtue of the nondecreasing of the function  we 
have 
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! xn g s( )( )( )"! x g s( )( )( ) ds
0

# t( )

$ .    (3.2) 

Now, in virtue of the uniform continuity of the 
function !  on  there exists  such 
that if  with , we have 

 
.
 

Also, for this  there exists  such that for 
all  we have that  i.e. 

 for all  and consequently 

 

for all . Then, taking into account the previous 
inequalities, for  and n ! n

0
 we have 

 

 
.
 

          (3.3) 

Morever, since T is a continuous operator, there 
exists  such that for all  we have 

 

Consequently, if we take  from the 
inequality (3.3) we have 

.
 

This fact proves that the operator A is continuous on 
. 

Consider the operator A on the subset  of the ball 
 defined by 

. 

Obviously, the set  is nonempty, bounded, closed 
and convex. Now, we show that  is closed. To do 
this firstly, let  then there exists a sequence 

 such that . Then we have 

. Since  then 
. For this reason, . So,  is closed.  

In view of the assumptions (i), (ii), (iv), (v) and (vi) if 
 then  for . Thus A transforms 

the set  into itself. Furthermore, A is continuous on 

. 

Let . 
Without loss of generality, we may assume that . 

Then, from the definition of the operator B we obtain  

 

and 

 

Hence, we have 

 

 

!a " t
1( )( )! Tx( ) # t

1( )( ) Bx( ) t
1( )  

 

 

 

Where  are 
defined as 
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Thus, we get 

. If we take the 
supremum at this inequality over all x, we have the 
inequality 

 
. 

In virtue of the continuity of the functions  and 
 uniform continuity of the function  on we 

have that  furthermore 
 and . 

Consequently, we have 

.      (3.4) 

Let . 
Then, 

 

= a ! t
2( )( ) + Tx( ) " t

2( )( ) Bx( ) t
2( )  

 

 

 

 

 

 

 

 

 

 

Now we will prove . In 
fact, notice that 

 

 

 

 

 

 

 

 

.

 

Since  is nondecreasing we have 
. On the other hand, in view of the 

assumption (iv), . 
Furthermore, since  we have 

. Then, 

.(3.5)
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On the other hand, since  
and  is nondecreasing function we obtain that 

.     (3.6)
 

Consequently, from (3.5) and (3.6) we observe that 
. Hence, 

 

 

. 

Thus, if we take the supremum at this inequality 
over all , we have the inequality 

. 

Consequently, if we take the supremum over all  
we get 

.      (3.7)  

Finally, combining (3.4) and (3.7), we obtain 

µ AX( ) = !0 AX( ) + i AX( )

" f M# ,r0
!0 TX( ) + f M# ,r0

i TX( )

= f M# ,r0
µ TX( )

" f M# ,r0
$µ X( ).

 

Thus, Theorem 2.1 (recall ) 

guarantees that there exists  a solution of (3.1). 
Furthermore, such a solution is nondecreasing in view 
of Remark 1. 

Example 3.1. Let us consider the equation 

.
 

          (3.8) 

Let . 
These functions satisfies the assumptions (i) and (ii). 

The function  satisfies the assumption 

(iii). Let  be given by  

and it satisfies assumption (iv). Let  and 
this function satisfies assumption (v). Also, this function 
has an absolute maximum at x=0. We have that 

 and c=0, 

. From  and  it is seen that 

 and besides  ln(1 . 

The operator T from C(I) to C(I) is a positive 
operator. Let us show that the operator T is continuous. 
To do this let  be arbitrarily element chosen from 
C(I). For  we have the following estimate: 

 

and 

 

               (3.9) 

From the inequality (3.9) we obtain 

.  (3.10) 

From the inequality (3.10) we obtain 

 

Taking  we get 

 

If  is chosen as 

. 

it is seen that the operator T is continuous at the point 
x0. Since x0 is an arbitrarily element chosen from C(I), T 
is continuous on C(I).  
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On the other hand, for each x∈ C(I) and each t∈I the 
inequality 

 

is provided. In fact, 

 

where . 

Thus, the assumption (vi) is satisfied. There exists 
r0 positive solution that provides the inequality 

. 

Actually, since  and for 
any number r0 constant which provides the inequality 

, 

this constant r0 is a solution of the following inequality 

 

For example r0=2 is a solution of this inequality. 
Thus the assumption (vii) is satisfied. 

Let  and 

. In this case, we have the following estimate: 

 

so, 

 

thus we get 

 

which implies 

. 

Then, we have 

 

and 

 

i.e. 

      
(3.11)

 

Let . 
In this case, we have the following estimate: 

 

 

!
1

5
x t

2( )" x t1( ) x t2( ) + x t1( )  

 

 

 

so, 

 

. 

In this inequality, if we take the supremum over all 
, we get 

 

 

which yields 
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. 

Again, if we take the supremum over all x, we get the 
inequality 

 

and we have 

.      
(3.12)

 

From the inequalities (3.11) and (3.12) we get 

µ TX( ) !
4

5
µ X( ) . 

Then, !  can be taken as ! =
4

5
. Also, for M! ,2 = 1  and 

ln(1  the inequality  holds. 
Thus, the assumption (viii) is satisfied and in view of 
the Theorem 3.1, the equation (3.8) has at least one 
solution which is nondecreasing. 

Remark 2. In the Example 3.1, since 

 

for all  and , the condition (vi) 

 

 

in [1] doesn’t hold. Hence, the main result given in [1] is 
not applicable to the our integral equation (3.8). 
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