
 Journal of Advances in Applied & Computational Mathematics, 2019, 6, 1-18 1

 E-ISSN: 2409-5761/19 © 2019 Avanti Publishers

A Parallel Computation Algorithm for Image Feature Extraction

A. Belousov and J. Ratsaby*

Department of Electrical and Electronics Engineering, Ariel University, Israel
Abstract: We present a new method for image feature-extraction for learning image classification. An image is
represented by a feature vector of distances that measure the dissimilarity between regions of the image and a set of
fixed image prototypes. The method uses a text-based representation of images where the texture of an image
corresponds to patterns of symbols in the text string. The distance between two images is based on the LZ-complexity of
their corresponding strings. Given a set of input images, the algorithm produces cases that can be used by any
supervised or unsupervised learning algorithm to learn image classification or clustering. A main advantage in this
approach is the lack of need for any image processing or image analysis. A non-expert user can define the image-
features by selecting a few small images that serve as prototypes for each class category. The algorithm is designed to
run on a parallel processing platform. Results on the classification accuracy and processing speed are reported for
several image classification problems including aerial imaging.

Keywords: Image classification, Parallel distributed processing, String distance.

1. INTRODUCTION

Image classification research is an area of research
which is part of the field of computer vision and image
processing. It aims at finding representations of images
that can be automatically used to categorize images
into a finite set of categories (classes). Applications of
image classification include the major areas of remote
sensing image classification [14], medical image
analysis, retrieval and computer aided diagnosis [4],
industrial inspection and anomalies detection [16], and
pattern recognition, as in for instance, fingerprint
classification (used for efficient fingerprint identification)
[9]. Typically, algorithms that classify images require
some form of pre-processing of an image prior to
classifying it. This process usually includes an
extraction of relevant features or descriptors that
describe certain characteristics of the image. For
instance, low level local descriptors give a description
of the image in terms of its color, shape, regions, and
texture. It is well known that texture is a very important
feature for describing regions of an image and plays a
significant role in image classification [12, 17]. Texture
dictates how smooth or coarse a part of an image is.
There are different ways in which texture can be
represented. Among the more popular ones is the
spectral approach where the texture of an image is
extracted from properties of the Fourier transform of
the image [10], and the local binary pattern (LBP)
representation [15] which uses a binary code to
describe local texture patterns.

*Address correspondence to this author at the Department of Electrical and
Electronics Engineering, Ariel University, Israel; Tel:+972-3-907-6587;
E-mail: ratsaby@ariel.ac.il

Another approach, introduced in [5] is to convert an
image into text and represent its texture by patterns of
symbols. It is then possible to use string-distances,
such as the one introduced in [19], to measure the
dissimilarity between the texture of two images. A pair
of images that possess similar regions of texture will
have similar textual patterns in their corresponding
strings. Provided that the distance ignores ’irrelevant
patterns’ that are introduced by noise or that are non-
representative of the overall texture of the image, then
it is possible to accurately measure the level of
dissimilarity between the two images based on their
different textures.

Using this idea, [5] introduced a new distance
function, called Universal Image Distance (UID), for
measuring the distance between two images. The UID
first transforms each of the two images into a string of
characters from a finite alphabet and lets the distance
value between the images be the value given by a
string distance (defined in [19]) between their
corresponding strings. According to [19] the distance
between two strings x and y is a normalized
difference between the complexity of the concatenation
xy of the strings and the minimal complexity of each of
x and y . The complexity of a string x is the Lempel-
Ziv complexity [20].

In [6], the UID was applied in a serial algorithm to
convert images into feature vectors that can be used as
training cases for learning image classification. The ith
dimension is a feature that measures the UID between
the image and prototype images of the ith feature
category. For instance, if the problem is to learn to
classify images into the transportation categories of
cars, trucks, boats and airplanes, then feature
categories of cars may be for instance wheel, door,
headlights and feature categories of airplanes may be
wing and tail.

2 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

An advantage of the UID is that it can compare the
distance between two images of different sizes and
thus the prototypes which are representative of the
different feature categories may be relatively small and
hence easy to pick by the user that runs the algorithm.
For instance, an aerial image of the category industry
of size 128 !128 can be compared against a prototype
aerial image of a roof of a warehouse of size 40 ! 30 .
This facilitates the process of selecting prototypes
since it is easy to choose small images as prototypes
that have a homogenous texture that is representative
of a feature of the category.

Several basic problems of learning image
classification and image clustering based on this
algorithm were investigated in [5, 6] and resulted in
high accuracy. The disadvantage with the serial
algorithm is the amount of time it takes to produce the
training cases. For this reason, [3], initiated
experiments with a parallel distributed algorithm that
achieves what the serial algorithm does but much
faster. On a standard graphics processing unit (GPU) it
improves the execution speeds relative to [6] by more
than three orders of magnitude. The algorithm converts
an input image into a labeled case and by doing this for
the set of images, each labeled by its class, it yields a
data set that can be used to train any ’off-the-shelf’
supervised or unsupervised learning algorithm.

This process of converting an image into a finite
dimensional feature vector does not involve any prior
domain knowledge or image analysis expertise.
Compared to other image classification approaches
that extract features based on sophisticated
mathematical analysis [10, 17, 18], for instance,
analyzing the texture by various filters, or checking for
special spectral properties of an image, our approach
represents two-dimensional images by a naive one-
dimensional horizontal trace of the pixel values that
yields a string. As we present in section 5, surprisingly,
this naive representation of an image apparently
captures enough texture information about the image
that leads to accurate image-classification.

The current paper presents an improved version of
the parallel algorithm of [3] and reports on new
experimental results of several image classification
learning problems, including texture images and aerial
images classification which serve as test-bench
problems in the field of research. The paper is
organized as follows: in section 2 the concept of string
complexity and string distance are defined, in section 3
we define the image distance, in section 4 the
algorithm is described and in section 5 we present the

result of several problems of learning image
classification.

2. LZ-COMPLEXITY AND STRING DISTANCES

The UID function [5] is based on the LZ- complexity
of a string. The definition of this complexity follows [19,
20]: let S ,Q and R be strings of characters that are
defined over the alphabet A . Denote by l(S) the length
of S , and S(i) denotes the ith element of S . We
denote by S(i, j) the substring of S which consists of
characters of S between position i and j (inclusive).
An extension R = SQ of S is reproducible from S
(denoted as S! R) if there exists an integer p ! l(S)
such that Q(k) = R(p + k !1) for k =1,…, l(Q) . For
example, aacgt! aacgtcgtcg with p = 3 and
aacgt! aacgtac with p = 2 . R is obtained from S (the
seed) by first copying all of S and then copying in a
sequential manner l(Q) elements starting at the pth
location of S in order to obtain the Q part of R .

A string S is producible from its prefix S(1, j)
(denoted S(1, j)! S), if S(1, j)! S(1, l(S)"1) . For
example, aacgt! aacgtac and aacgt! aacgtacc both
with pointers p = 2 . The production adds an extra
’different’ character at the end of the copying process
which is not permitted in a reproduction.

Any string S can be built using this production
process where at its ith step we have the production
S(1,hi!1)" S(1,hi) where hi is the location of a
character at the ith step. (Note that S(1, 0)! S(1,1)).

An m -step production process of S results in
parsing of S in which H (S) = S(1,h1) ! S(h1 +1,h2)

 !S(hm!1 +1,hm) is called the history of S and
Hi (S) = S(hi!1 +1,hi) is called the ith component of
H (S) . For example, for S = aacgtacc , we have
H (S) = a ! ac ! g ! t ! acc as the history of S .

If S(1,hi) is not reproducible from S(1,hi!1) then the
component Hi (S) is called exhaustive, meaning that
the copying process cannot be continued and the
component should be halted with a single character
innovation. Every string S has a unique exhaustive
history [20].

Let us denote by cH (S) the number of components
in a history of S . The LZ complexity of S is defined as
c(S) = min cH (S){ } , where the minimum is over all
histories of S . It can be shown that c(S) = cE (S) where

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 3

cE (S) is the number of components in the exhaustive
history of S .

A distance for strings based on the LZ-complexity
was introduced in [19] and is defined as follows: given
two strings, X and Y , denote by XY their
concatenation then define

d(X,Y) := max c(XY)! c(X), c(YX)! c(Y){ }.

In [5], it was found that the following normalized
distance

d(X,Y) :=
c(XY)!min c(X), c(Y){ }

max c(X), c(Y){ }
. (2.1)

performs well in classification and clustering of images.
d is normalized because c(XY)!min c(X), c(Y){ }
! c(X)+ c(Y)"min c(X), c(Y){ } = max c(X), c(Y){ } .

We note in passing that (2.1) resembles the
normalized compression distance of [7], which rely on
data compression for approximating a string’s
complexity. In contrast, the LZ-complexity is computed
exactly with no need for a compressor. Note that d is
not a metric since a distance of 0 implies that the two
strings are close but not necessarily identical. We refer
to d as a universal distance because it applies to any
two individual strings with no assumption or prior
knowledge about the problem or source that generated
them. d only depends on the LZ-complexity of each of
the two strings (and their concatenation), which does
not assume anything about the origin or the source of
the strings.

3. IMAGE DISTANCE

Based on (2.1), we now define a distance between
images. The idea is to convert each of two images I
and J into strings X (I) and X (J) of characters from a
finite alphabet of symbols. Once in string format, we
use d(X (I) , X (J)) as the distance between I and J .
The details of this process are described in Procedure
UID.

Procedure UID (Universal Image Distance)

1. Input: two color images I , J in jpeg format (RGB
representation)

2. Transform the RGB matrices into gray-scale. Each
pixel is now a single numeric value in the range of
0 to 255 . We refer to this set of values as the
alphabet and denote it by A .

3. Scan each of the grayscale images from top left to
bottom right and form a string of symbols from A .
Denote the two strings by X (I) and X (J) .

4. Compute the LZ-complexities: c X (I)() , c X (J)() and

the complexity of their concatenation c X (I)X (J)()

5. Output: UID(I , J) := d X (I) , X (J)() .

The transformation into gray-scale is a matter of
representational convenience and in this paper, we
only deal with classifying images based on their gray-
scale versions. Clearly, classifying color images is an
easier problem since color information adds significant
information, for instance, detecting fire in an image of a
forest is much easier with a color image than with
grayscale. As a note in passing, in order to deal with
color images without this transformation, one can
create a three-dimensional alphabet’ whereby each
’letter’ in this alphabet corresponds to an RGB triple
with each component in the range of 0 to 255 . Strings
would comprise of sequences of such three-
dimensional symbols whose LZ-complexity can be
computed, albeit taking considerably more time. This
way color information about the image can be included
in the string representation.

Figure 1 displays hierarchical clustering of images
of objects from categories cars , trucks using the UID;
it is based on a matrix of distances between all pairs of
objects (Table 1). The labels b through g in the
dendrogram correspond to the labels of the objects (b)
to (g) . The vertical axis of the dendrogram indicates
the distance value (which by definition is between 0
and 1). There are two clearly distinguishable clusters
and they correspond to the two category groups of
objects. The categories of the images are not given to
the clustering algorithm but only the distance values
hence the UID successfully measures objects of the
same category as closer than objects from different
categories.

Another example with three categories is displayed
in Figure 2, which is based on a distance matrix of
Table 2. Here too the UID succeeds and measures
objects of different categories as more distant than
objects from the same categories.

4. ALGORITHM

In this section we describe the parallel distributed
processing algorithm for extracting features and
learning image classification. Given a set of images,
the algorithm produces the corresponding cases
(feature vectors) that can be used by any supervised
learning algorithm to learn the image classification task.

4 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

Figure 1: Hierarchical clusters of images of objects from two categories trucks and cars ; distances based on Procedure UID.
As can be seen, the UID is able to distinguish between trucks and cars and place them in distinct clusters.

Table 1: Distance Matrix for Objects in Figure 1

Image f e g c d b

f 0.001 0.842 0.85 0.901 0.89 0.911

e 0.85 0.001 0.862 0.891 0.9 0.904

g 0.845 0.846 0.001 0.886 0.898 0.915

c 0.889 0.875 0.883 0.001 0.882 0.881

d 0.893 0.892 0.902 0.893 0.001 0.902

b 0.897 0.888 0.906 0.877 0.883 0.001

Figure 2: Hierarchical clusters of images of objects from three categories buses , trucks and cars ; distances based on
Procedure UID. The UID is able to distinguish between buses, trucks and cars and place them in distinct clusters. This is based
on the patterns that it picks out in the string-representation of these images.

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 5

Table 2: Distance Matrix for Objects in Figure 2

Image c b e d g f

c 0 0.888 0.893 0.902 0.921 0.926

b 0.892 0 0.892 0.9 0.92 0.928

e 0.889 0.89 0 0.879 0.916 0.917

d 0.896 0.896 0.882 0 0.91 0.915

g 0.915 0.912 0.909 0.902 0 0.87

f 0.921 0.916 0.92 0.91 0.869 0

The algorithm is designed for scalable distributed
computations and takes advantage of relatively
inexpensive yet massively-parallel GPU processors
that are ubiquitous in today’s technology.

The algorithm is divided into several stages. The
first, which we denote as Algorithm 2P, is presented in
section 4.2. It selects prototype images for each of the
feature categories. A prototype image of a feature
category is defined as a small image that has some
repetitive pattern of texture which may appear, perhaps
at different scales, in local regions of typical images
that have this feature. The second stage is Algorithm
3P which is described in section 4.3. It computes the
cases (feature vectors) for images in the input set. The
final stage is Algorithm 4 (section 4.4) which uses the
cases for training any supervised learning algorithm.

At the very basis of the algorithm, there are three
procedures, each designed to work in a parallel
processing manner. We describe them in the next
section.

4.1. Procedures

Procedure LZMP (Lempel-Ziv Massively Parallel) is
described on page 10. It takes a string and computes
its LZ-complexity, building the exhaustive history (as
described in section 2) by searching for the
components in parallel. Compared to the standard
serial procedure of computing the LZ-complexity of a
string, LZMP has a speedup factor which is linear in the
number of computing cores [2]. The implementation of
Procedure LZMP in CUDA is described in [1] section
3.3.

Let us define the function,

dp(X,Y ,a,b) :=
LZMP(XY)!min a,b{ }

max a,b{ }
 (4.1)

where a , b are the LZ-complexity values of the string
X , Y , respectively. This function computes the
distance (2.1) where the complexity c(XY) of their
concatenation is computed by LZMP while the
complexity values, a , b , of the individual strings, X ,
Y is given (precomputed at an earlier stage). dp is
used in procedure DMat, step 3, when computing the
distance between all pairs of strings that are elements
of two vectors.

A key to our parallel approach is to compute
distances between multiple subregions of an image
and prototypes from all categories, in parallel. This is
achieved by Procedure VLZMP page 11, which
computes the LZ-complexity of all elements of a vector
of strings and executes the LZMP procedure multiple
times in parallel. The implementation of Procedure
VLZMP in CUDA is described in [1] section 4.2.

Procedure DMat page 11 computes in parallel the
distance dp between every pair of elements of two
vectors of strings. It uses VLZMP to precompute the
LZ-complexity of each individual string of the two
vectors and then computes dp in parallel for all pairs.
The variable ip,q denotes an index variable of the
computing block Bp,q (each block has its own local
memory and set of variables). The implementation of
Procedure DMat in CUDA is described in [1] section
5.3.

4.2. Algorithm 2P

Our approach to image classification is to extract
features automatically by computing distances from a
set of prototypes images that are selected manually,
before learning. Algorithm 2P, displayed on page 11,
queries the user iteratively for these prototypes, for
each feature category. It displays a dendrogram of the
hierarchical clusters of these prototypes. If clusters are
formed such that they correspond to the feature
categories then Algorithm 2P halts which indicates that

6 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

the prototypes are good. Subsequently, they are used
by Algorithm 3P.

Since Algorithm 2P involves the user in providing
candidates as image prototypes and interpreting the
dendrogram, there are some basic heuristic guidelines
for the user to follow in order to select good prototypes.
As an example, consider the Banja Luka dataset [18]
(discussed in more details in section 5) which consists
of six categories of aerial images: houses , cemetery ,
industry , field , river and trees .

Figure 3 shows typical images from this dataset. In
this particular problem, we let the feature categories be
the classification categories themselves. In general, the
feature categories may be different and more specific
than the classification categories and there can be
more than one feature category for every classification
category.

Figure 4 shows an image of category houses and
the selected prototypes of smaller size taken from this
image. Each prototype is predominantly made of a
single texture. The left and bottom prototypes capture
the texture of roofs while the right prototype captures
the texture of a street. Both, roofs and streets make up
features of the category houses.

To explain the heuristic of prototype selection, we
start by showing what happens when one chooses bad
prototypes. Figure 5 displays these prototypes which

are numbered as follows: 1 - 4 (cemetery), 5 - 8 (field),
9 - 12 (houses), 13 - 16 (industry), 17 - 20 (river), 21 -
24 (trees). They are considered bad because each
contains more than a single feature of its category; for
instance, prototypes of category houses contain not
only images of houses but also of streets and
vegetation, which appear in other categories. This can
lead to a similarity between prototypes of different
categories and result in a higher misclassification error.
One can see in these prototypes an object or a region
with texture that is not characteristic of the
corresponding category. Algorithm 2P detects this fact
and displays a dendrogram with bad clusters, for
instance, prototypes 5 to 8 do not belong to the same
cluster, as seen in Figure 6. This leads to poor
accuracy results, as reported in section 5.

Figure 4: Selecting prototypes.

Figure 3: Examples of images from which prototypes are selected. Prototypes are depicted by the small rectangular parts. They
are easily chosen by a non-expert.

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 7

For this same problem, Figure 7 displays a set of
good prototypes numbered as follows: 1 - 4 (cemetery),
5 - 8 (field), 9 - 12 (houses), 13 - 16 (industry), 17 - 20
(river), 21 - 24 (trees). In each category, we selected
prototypes that each possesses predominantly a single
texture that is characteristic of the category. The aim is
not to include more than a single feature in a single
prototype. In this particular problem, since we chose
feature categories as the classification categories, then
prototypes in the same category had a similar texture
while those in different categories had different texture.
Clear hierarchical clusters are formed that correspond
to the classification categories, as displayed in the
dendrogram of Figure 8. One advantage of the UID is
the fact that we can measure the distance between a
pair of images of different sizes. This enables one to
choose prototypes that are small while leaving the size
of the input image different. Being small means that a
prototype can be made to have a single, or few,

features of its category and this is desirable as
mentioned above.

4.3. Algorithm 3P

Algorithm 3P, displayed page 12 and page 13, uses
the prototypes selected by Algorithm 2P and computes
for every image in the input set a feature vector
(training case). Algorithm 3P reads every input image
and divides it into a number of non-overlapping square
(window) regions, denoted as sub-images. It then
outputs a case which consists of the proportion number
of times that a prototype was closest to any of these
sub-images. Each component of the case represents
this proportion for a different prototype. The algorithm
utilizes a number of computing blocks which begin to
run in parallel in step 12 . Steps 6 to 11 which run in
serial are responsible for converting each of the N
input images Ii into a vector vi of strings Xi, j that

correspond to sub-images I j
(i) of Ii , 1! i ! N , and

Figure 5: Examples of bad prototypes. They contain features that appear in more than one category, for instance, the
prototypes for houses contain not only houses but also streets and vegetation which appear in other categories.

Figure 6: Dendrogram corresponding to bad prototypes. For instance, prototypes 5 and 8 which are from the field category are
not in the same local cluster.

8 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

converting each of the L prototype images into strings
which together form the vector u . Figure 9 depicts an
example of an input image Ii which is split into sixteen
sub-images I j

(i) , 1! j !16 , shown in Figure 10.

Figure 9: Example of an input image.

Figure 10: Sub-images of the image in Figure 9 obtained by
Algorithm 3P.

Figure 7: Good prototypes for the Banja Luka dataset.

Figure 8: Dendrogram of good prototypes in Figure 7. Based on the UID, hierarchical clustering discovers the six clusters that
correspond to the six categories of prototypes in Figure 7.

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 9

Next, we highlight some of the main steps of
Algorithm 3P. Each computing block Bq (there are a
total of Q blocks) processes one image at a time thus
a total of Q images are processed in parallel at any
given time. A block Bq , which on a typical GPU may
use thousands of threads in parallel, executes
Procedure DMat on a pair of vectors viq and u , where

viq consists of the strings that correspond to all sub-

images of image Iiq . On Block Bq Procedure DMat

returns a matrix Dq whose component Dq[j, k] is the

UID value between the kth prototype and j th sub-
image of image Iiq . Block Bq then determines for each

subimage of image Iiq the closest prototype to it (the

winner), and keeps the count of the number of times
that a prototype won and eventually produces the case

for that image. The above is repeated until all images
Ii are processed, 1! i ! N , where, except possibly for
the last iteration, there are always Q images being
processed concurrently. Table 3 displays cases
produced by Algorithm 3P for four input images shown
in Figure 11 with one prototype per category hence the
dimension of a case equals the number of categories.

4.4. Algorithm 4

Given the input set I of N images, as described in
the previous section, Algorithm 3P produces a set R of
L -dimensional normalized feature vectors, where

L =
l=1

M
! Ll is the total number of prototypes. Denote by

T the category target variable according to which the
images are to be classified and denote by ! the set of
values that T takes. In the transportation problem
(section 1), the set ! consists of the six category
values. Label each case with the category of the image

Figure 11: Input images.

Table 3: Cases Produced by Algorithm 3P for Images in Figure 11

 trees cemetery industry river houses field

Figure 11a 0 0 0 0 0.125 0.875

Figure 11b 0 0 0 0 0.0625 0.9375

Figure 11c 0 0 0.125 0.0625 0.8125 0

Figure 11d 0 0 0.125 0 0.875 0

10 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

that it represents and let the resulting set of labeled
cases be denoted by DT . The process of learning

classification from DT is described in Algorithm 4 on
page 14.

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 11

12 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 13

14 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

5. EXPERIMENTS AND RESULTS

In this section, we describe experiments and report
on the classification accuracy and the computational
processing performance. The setup consists of a PC
with a 2.8Ghz AMD Phenom II X6 1055T CPU (with six
cores). A GPU hardware on this PC is a Tesla K20C
board with a single GK110 GPU from Nvidia Corp..
This GPU is based on the Keppler architecture (with
compute capabilities of 3.5). The algorithm is
implemented on the CUDA programming platform
(release 6.0) and the operating system is Ubuntu Linux
2.6.38-11-generic.

We started by testing the algorithm on several two-
category image classification problems that were
obtained from the CALTECH-101 testbench image set
[8]. We present one such problem of classification into
the categories airplane and ketch (yacht). Ten
prototypes of each category were chosen by collecting
small images of airplanes and boats. The prototypes of
airplane are of size 150 ! 70 pixels and the prototypes
of ketch are of size 150 !130 . Figure 12 shows a few
examples of such prototypes. The set of input images
consists of 74 images of airplanes of size 420 ! 200
and 100 images of yachts of size 300 ! 300 . It takes
345 seconds for Algorithm 3P to produce the 174
cases from the input image set. Figure 13 displays two
examples of input images, one from category airplane
and one from ketch along with their corresponding
partition into sub-images of size 150 !150 (obtained in
Algorithm 3P, step 7, om page 17). As mentioned in
section 4.2 the algorithm permits the size of prototypes
to differ and the size (or number) of sub-images to

differ from one feature category to another. We ran
four learning algorithms, multi-layer perceptrons,
decision trees J48, naive-Bayes and lazy IB1, on a ten-
fold cross validation using the 174 input images. Table
4 presents the accuracy results versus the baseline
algorithm (rules.ZeroR), which classifies based on the
prior class probability. The configuration parameter
values of the learning algorithms used in WEKA [11]
are displayed under the accuracy result. As can be
seen, the J48 decision tree learner achieves the
highest accuracy of 96.54% (relative to the baseline
accuracy of 57.52%).

Next, we considered a problem of recognizing
different image textures. The input set consists of the
1000 images of the Texture Database [13] test-bench
which has 25 categories of various types of real
textures, for instance, the texture of glass, water, wood,
etc.. Each category has 40 images of size 640 ! 480 .
We chose as feature categories the classification
categories themselves and selected five small
prototypes of size 150 !150 from each one without
using Algorithm 2P (just picking parts of images in a
random way to be prototypes). It takes about 25 hours
for Algorithm 3P to produce 1000 cases corresponding
to the images. We ran the following classification
learning algorithms: lazy IB1, decision trees J48, multi-
layer perceptrons, naive Bayes, random forest. Ten
fold cross validation accuracy results are displayed in
Table 5 (parameter settings are displayed under the
accuracy results). As shown, the best obtained
accuracy result is 70.73% which is achieved by the

Figure 12: Three prototypes from category airplane.

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 15

random forest algorithm; this is 17.6 times better than
the baseline ZeroR classification rule.

As the final problem, we tested the algorithm on the
classification of aerial images. We used the Banja Luka
dataset1 from [18] which consists of the six categories

1Available: http://dsp.etfbl.net/aerial/

(mentioned in section 4.2) and 606 images of size
128 !128 pixels. As the feature categories, we use the
categories themselves. Four prototypes from each
feature category were selected in a way that captures
the different textures that we see in typical images of
that category. As mentioned above, a main advantage
of our approach is that the selection of prototypes can
be done by a non-expert and does not involve any
sophisticated data analysis or interpretation. Figue 14

Table 4: Classification Result for Airplane v.s. ketch Problem

Dataset (1) (2) (3) (4) (5)

airplane-ketch 57.52 83.65 ! 93.82 ! 96.54 ! 86.75 !

 ! , • statistically significant improvement or degradation
(1) rules.ZeroR ” 48055541465867954
(2) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779
(3) lazy.IB1 ” -6152184127304895851
(4) trees.J48 ’-C 0.25 -M 2’ -217733168393644444
(5) bayes.NaiveBayesMultinomialUpdateable ” -7204398796974263186

Figure 13: Input images from category airplane and ketch and their respective sub-images.

Table 5: Classification Result for the Texture Problem

Dataset (1) (2) (3) (4) (5) (6)

cat-40img 4.00 63.16 ! 58.59 ! 66.50 ! 61.92 ! 70.73 !

 ! , • statistically significant improvement or degradation.
(1) rules.ZeroR ” 48055541465867954
(2) lazy.IB1 ” -6152184127304895851
(3) trees.J48 ’-C 0.25 -M 2’ -217733168393644444
(4) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779
(5) bayes.NaiveBayesMultinomialUpdateable ” -7204398796974263186
(6) trees.RandomForest ’-I 100 -K 0 -S 1’ -2260823972777004705

16 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

displays the set of prototypes that were used. It takes
0.9 second for Algorithm 2P to run, namely, to read
the 21 prototype images, convert them into strings,
compute the 212 = 441 pairs of inter-prototype
distances, and finally write the distance matrix into an
output file, which is then displayed as a dendrogram by
an external Java-based code.

Figure 3 shows examples of input images from the
six categories and Figure 10 displays the 16 sub-
images that are created by Algorithm 3P for input
image in Figure 9. It takes 223 seconds for Algorithm
3P to produce the 606 cases. Note that this involves
computing 606 !16 ! 21 = 203, 616 UID calculations.
Each case corresponds to one input image, and is a
vector of dimensionality 21 which consists of the
normalized counts of the number of times that a
prototype was closest to a submerge of the image.

With the cases ready, we ran the following learning
algorithms, SVM (libSVM), SMO, lazy.IBk, J48,
RandomForest and RandomTree each on a ten-fold
cross validation using the 606 cases that were
produced by Algorithm 3P. Table 6 presents the
accuracy results versus the baseline algorithm
(rules.ZeroR), which classifies based on the prior class
probability. The configuration parameter values of the
learning algorithms, used in WEKA [11] are displayed

under the accuracy result. As can be seen, the
RandomForest learner achieves the highest accuracy
of 80.42% (relative to the baseline accuracy of
29.37%). The reason that the baseline accuracy is not
(1 / 6)100% is because the distribution of number of
cases per category is not uniform. Our accuracy result
is within the range of accuracies of 79.5% to 87.3%
reported in [18] who use more sophisticated and
advancd image-processing based on ST-descriptors
and a complex filter bank. Table 7 displays the
confusion matrix for the Banja Luka problem as learnt
by the RandomForest algorithm and is similar to the
one reported in [18].

All the experiments that we have conducted,
including the above, led us to use the heuristic of
choosing prototypes (described in section 4.2). In
selecting prototypes, every prototype should capture a
characteristic of its feature category which is
represented via the texture, rather than letting a
prototype contain a mixture of many different textures.
The confusion between images from the industry
category, which are being classified as houses, is
relatively high as can be seen from the fourth row of
the confusion matrix (Table 7). Trying a different choice
of prototypes for industry did not improve this
misclassification but we believe that with some more
trial and error, one can find prototypes that improve it.

Figure 14: Prototypes for the Banja Luka dataset.

Table 6: Classification Result for the BanjaLuka Problem, 24 Prototypes

Dataset (1) (2) (3) (4) (5) (6) (7)

Zone-21-16X16 30.36 54.07 ! 73.89 ! 70.53 ! 72.58 ! 80.42 ! 66.42 !

 ! , • statistically significant improvement or degradation.
(1) ZeroR ”
(2) LibSVM ’-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model Weka-3-7 -seed 1’
(3) SMO ’-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K PolyKernel -E 1.0 -C 250007’
(4) IBk ’-K 1 -W 0 -A LinearNNSearch -A EuclideanDistance -R first-last’
(5) J48 ’-C 0.25 -M 2’
(6) RandomForest ’-I 100 -K 0 -S 1 -num-slots 1’
(7) RandomTree ’-K 0 -M 1.0 -V 0.001 -S 1’

A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 17

Considering how little effort and no-expertise is
needed in our approach to learning image
classification, and the naive representation of an image
as a string of symbols, it is surprising that we obtained
accurate classification rates on a variety of problems; in
the Banja Luka test bench, our best result is in the
accuracy range of results reported in [18] who use
sophisticated image descriptors.

Our algorithm can serve well in settings with little or
no domain knowledge and relying solely on a non-
expert to select the prototypes. The algorithm can also
serve as a starting point from which more sophisticated
analysis and specialized feature extraction can be
made. Lastly, the cases produced by Algorithm 3P may
also be used for unsupervised learning and to learn
clustering of images.

REFERENCES

[1] Belousov A. Massively parallel computations for image
classification. Master's thesis, Ariel University,
http://www.ariel.ac.il/sites/ratsaby/Theses/alex.pdf, 2015.

[2] Belousov A, Ratsaby J. Massively parallel computations of
the LZ-complexity of strings,. In Proc. of the 28th IEEE
Convention of Electrical and Electronics Engineers in Israel
(IEEEI'14), pages pp. 1-5, Eilat, Dec. 3-5 2014.
https://doi.org/10.1109/EEEI.2014.7005885

[3] Belousov A, Ratsaby J. A parallel distributed processing
algorithm for image feature extraction. In Advances in
Intelligent Data Analysis XIV - 14th International Symposium,
IDA 2015, Saint-Etienne, France, October 22-24, 2015.
Proceedings, volume 9385 of Lecture Notes in Computer
Science. Springer, 2015.

[4] Cheng H. D. Shan J, Ju W, Guo Y, Zhang L. Automated
breast cancer detection and classification using ultrasound
images: A survey. Pattern Recognition 2010; 43(1): 299-317.
https://doi.org/10.1016/j.patcog.2009.05.012

[5] Chester U, Ratsaby J. Universal distance measure for
images. In Proceedings of the 27th IEEE Convention of
Electrical Electronics Engineers in Israel (IEEEI’12), pages 1-
4, Eilat, Israel, November 14-17, 2012.
https://doi.org/10.1109/EEEI.2012.6377115

[6] Chester U, Ratsaby J. Machine learning for image
classification and clustering using a universal distance
measure. In Brisaboa N, Pedreira O, Zezula P, Eds.,
Proceedings of the 6th International Conference on Similarity
Search and Applications (SISAP’13), volume 8199 of
Springer Lecture Notes in Computer Science 2013; pp. 59-
72.
https://doi.org/10.1007/978-3-642-41062-8_7

[7] Cilibrasi R, Vitanyi P. Clustering by compression. IEEE
Transactions on Information Theory 2005; 51(4): 1523-1545.
https://doi.org/10.1109/TIT.2005.844059

[8] Fei-Fei L, Fergus R, Perona P. Learning generative visual
models from few training examples: An incremental bayesian
approach tested on 101 object categories. Computer Vision
and Image Understanding 2007; 106(1): 59-70. Special issue
on Generative Model Based Vision.
https://doi.org/10.1016/j.cviu.2005.09.012

[9] Galar M, Derrac J, Peralta D, Triguero I, Paternain D, Lopez-
Molina C, Garcı́a S, Benı́tez J. M. Pagola M, Barrenechea E,
Bustince H, Herrera F. A survey of fingerprint classification
part i: Taxonomies on feature extraction methods and
learning models. Knowledge-Based Systems 2015; 81: 76-
97.
https://doi.org/10.1016/j.knosys.2015.02.008

[10] Gonzalez RC, Woods R. E. Digital Image Processing (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006.

[11] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P,
Witten I. H. The WEKA data mining software: An update.
SIGKDD Explorations 2009; 11(1): 10-18.
https://doi.org/10.1145/1656274.1656278

[12] Haralick R. M. Shanmugam K, Dinstein I. Textural features
for image classification. Systems, Man and Cybernetics,
IEEE Transactions on, SMC 1973; 3(6): 610-621.
https://doi.org/10.1109/TSMC.1973.4309314

[13] Lazebnik S, Schmid C, Ponce J. A sparse texture
representation using local affine regions. IEEE Trans Pattern
Anal Mach Intell 2005; 27(8): 1265-1278.
https://doi.org/10.1109/TPAMI.2005.151

[14] Lu D, Weng Q. A survey of image classification methods and
techniques for improving classification performance. Int J
Remote Sens 2007; 28(5): 823-870.
https://doi.org/10.1080/01431160600746456

[15] Ojala T, Pietikainen M, Harwood D. A comparative study of
texture measures with classification based on featured
distributions. Pattern Recognition 1996; 29(1): 51-59.
https://doi.org/10.1016/0031-3203(95)00067-4

[16] Pham D.T. Alcock RJ. Chapter 5 -classification. In D.T.
PhamR.J. Alcock, editor, Smart Inspection Systems,
Academic Press, London 2003; pp. 129-155.
https://doi.org/10.1016/B978-012554157-2/50005-5

[17] Raju J, Durai C. A. D. A survey on texture classification
techniques. In Information Communication and Embedded
Systems (ICICES), 2013 International Conference on, 2013;
pp. 180-184.
https://doi.org/10.1109/ICICES.2013.6508183

[18] Risojevic V, Babic Z. Aerial image classification using
structural texture similarity. In Proceedings of the IEEE
International Symposium on Signal Processing and
Information Technology (ISSPIT) 2011; pp. 190-195.
https://doi.org/10.1109/ISSPIT.2011.6151558

Table 7: Confusion Matrix for the Banja-Luca Problem, as Learnt by the Random Forest Algorithm

cemetery field houses industry river trees ! classified as

6 1 16 0 0 0 cemetery

0 159 1 3 3 1 field

2 5 120 3 0 3 houses

0 10 15 38 1 1 industry

0 22 2 1 36 6 river

0 3 3 0 3 86 trees

18 Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby

[19] Sayood K, Otu H. H. A new sequence distance measure for
phylogenetic tree construction. Bioinformatics 2003; 19(16):
2122-2130.
https://doi.org/10.1093/bioinformatics/btg295

[20] Ziv J, Lempel A. On the complexity of finite sequences. IEEE
Transactions on Information Theory 1976; 22(3): 75-81.
https://doi.org/10.1109/TIT.1976.1055501

Received on 15-07-2019 Accepted on 03-10-2019 Published on 14-10-2019

DOI: http://dx.doi.org/10.15377/2409-5761.2019.06.1

© 2019 Belousov and Ratsaby; Avanti Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

