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Abstract: We present a new method for image feature-extraction for learning image classification. An image is 
represented by a feature vector of distances that measure the dissimilarity between regions of the image and a set of 
fixed image prototypes. The method uses a text-based representation of images where the texture of an image 
corresponds to patterns of symbols in the text string. The distance between two images is based on the LZ-complexity of 
their corresponding strings. Given a set of input images, the algorithm produces cases that can be used by any 
supervised or unsupervised learning algorithm to learn image classification or clustering. A main advantage in this 
approach is the lack of need for any image processing or image analysis. A non-expert user can define the image-
features by selecting a few small images that serve as prototypes for each class category. The algorithm is designed to 
run on a parallel processing platform. Results on the classification accuracy and processing speed are reported for 
several image classification problems including aerial imaging. 
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1. INTRODUCTION 

Image classification research is an area of research 
which is part of the field of computer vision and image 
processing. It aims at finding representations of images 
that can be automatically used to categorize images 
into a finite set of categories (classes). Applications of 
image classification include the major areas of remote 
sensing image classification [14], medical image 
analysis, retrieval and computer aided diagnosis [4], 
industrial inspection and anomalies detection [16], and 
pattern recognition, as in for instance, fingerprint 
classification (used for efficient fingerprint identification) 
[9]. Typically, algorithms that classify images require 
some form of pre-processing of an image prior to 
classifying it. This process usually includes an 
extraction of relevant features or descriptors that 
describe certain characteristics of the image. For 
instance, low level local descriptors give a description 
of the image in terms of its color, shape, regions, and 
texture. It is well known that texture is a very important 
feature for describing regions of an image and plays a 
significant role in image classification [12, 17]. Texture 
dictates how smooth or coarse a part of an image is. 
There are different ways in which texture can be 
represented. Among the more popular ones is the 
spectral approach where the texture of an image is 
extracted from properties of the Fourier transform of 
the image [10], and the local binary pattern (LBP) 
representation [15] which uses a binary code to 
describe local texture patterns. 
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Another approach, introduced in [5] is to convert an 
image into text and represent its texture by patterns of 
symbols. It is then possible to use string-distances, 
such as the one introduced in [19], to measure the 
dissimilarity between the texture of two images. A pair 
of images that possess similar regions of texture will 
have similar textual patterns in their corresponding 
strings. Provided that the distance ignores ’irrelevant 
patterns’ that are introduced by noise or that are non-
representative of the overall texture of the image, then 
it is possible to accurately measure the level of 
dissimilarity between the two images based on their 
different textures. 

Using this idea, [5] introduced a new distance 
function, called Universal Image Distance (UID), for 
measuring the distance between two images. The UID 
first transforms each of the two images into a string of 
characters from a finite alphabet and lets the distance 
value between the images be the value given by a 
string distance (defined in [19]) between their 
corresponding strings. According to [19] the distance 
between two strings x  and y  is a normalized 
difference between the complexity of the concatenation 
xy  of the strings and the minimal complexity of each of 
x  and y . The complexity of a string x  is the Lempel-
Ziv complexity [20]. 

In [6], the UID was applied in a serial algorithm to 
convert images into feature vectors that can be used as 
training cases for learning image classification. The ith  
dimension is a feature that measures the UID between 
the image and prototype images of the ith  feature 
category. For instance, if the problem is to learn to 
classify images into the transportation categories of 
cars, trucks, boats and airplanes, then feature 
categories of cars may be for instance wheel, door, 
headlights and feature categories of airplanes may be 
wing and tail. 
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An advantage of the UID is that it can compare the 
distance between two images of different sizes and 
thus the prototypes which are representative of the 
different feature categories may be relatively small and 
hence easy to pick by the user that runs the algorithm. 
For instance, an aerial image of the category industry  
of size 128 !128  can be compared against a prototype 
aerial image of a roof of a warehouse of size 40 ! 30 . 
This facilitates the process of selecting prototypes 
since it is easy to choose small images as prototypes 
that have a homogenous texture that is representative 
of a feature of the category. 

Several basic problems of learning image 
classification and image clustering based on this 
algorithm were investigated in [5, 6] and resulted in 
high accuracy. The disadvantage with the serial 
algorithm is the amount of time it takes to produce the 
training cases. For this reason, [3], initiated 
experiments with a parallel distributed algorithm that 
achieves what the serial algorithm does but much 
faster. On a standard graphics processing unit (GPU) it 
improves the execution speeds relative to [6] by more 
than three orders of magnitude. The algorithm converts 
an input image into a labeled case and by doing this for 
the set of images, each labeled by its class, it yields a 
data set that can be used to train any ’off-the-shelf’ 
supervised or unsupervised learning algorithm. 

This process of converting an image into a finite 
dimensional feature vector does not involve any prior 
domain knowledge or image analysis expertise. 
Compared to other image classification approaches 
that extract features based on sophisticated 
mathematical analysis [10, 17, 18], for instance, 
analyzing the texture by various filters, or checking for 
special spectral properties of an image, our approach 
represents two-dimensional images by a naive one-
dimensional horizontal trace of the pixel values that 
yields a string. As we present in section 5, surprisingly, 
this naive representation of an image apparently 
captures enough texture information about the image 
that leads to accurate image-classification. 

The current paper presents an improved version of 
the parallel algorithm of [3] and reports on new 
experimental results of several image classification 
learning problems, including texture images and aerial 
images classification which serve as test-bench 
problems in the field of research. The paper is 
organized as follows: in section 2 the concept of string 
complexity and string distance are defined, in section 3 
we define the image distance, in section 4 the 
algorithm is described and in section 5 we present the 

result of several problems of learning image 
classification. 

2. LZ-COMPLEXITY AND STRING DISTANCES 

The UID function [5] is based on the LZ- complexity 
of a string. The definition of this complexity follows [19, 
20]: let S ,Q  and R  be strings of characters that are 
defined over the alphabet A . Denote by l(S)  the length 
of S , and S(i)  denotes the ith  element of S . We 
denote by S(i, j)  the substring of S  which consists of 
characters of S  between position i  and j  (inclusive). 
An extension R = SQ  of S  is reproducible from S  
(denoted as S! R ) if there exists an integer p ! l(S)  
such that Q(k) = R(p + k !1)  for  k =1,…, l(Q) . For 
example, aacgt! aacgtcgtcg  with p = 3  and 
aacgt! aacgtac  with p = 2 . R  is obtained from S  (the 
seed) by first copying all of S  and then copying in a 
sequential manner l(Q)  elements starting at the pth  
location of S  in order to obtain the Q  part of R . 

A string S  is producible from its prefix S(1, j)  
(denoted S(1, j)! S ), if S(1, j)! S(1, l(S)"1) . For 
example, aacgt! aacgtac  and aacgt! aacgtacc  both 
with pointers p = 2 . The production adds an extra 
’different’ character at the end of the copying process 
which is not permitted in a reproduction. 

Any string S  can be built using this production 
process where at its ith  step we have the production 
S(1,hi!1 )" S(1,hi )  where hi  is the location of a 
character at the ith  step. (Note that S(1, 0)! S(1,1)).  

An m -step production process of S  results in 
parsing of S  in which H (S) = S(1,h1 ) ! S(h1 +1,h2 )  

 !S(hm!1 +1,hm )  is called the history of S  and 
Hi (S) = S(hi!1 +1,hi )  is called the ith  component of 
H (S) . For example, for S = aacgtacc , we have 
H (S) = a ! ac ! g ! t ! acc  as the history of S . 

If S(1,hi )  is not reproducible from S(1,hi!1 )  then the 
component Hi (S)  is called exhaustive, meaning that 
the copying process cannot be continued and the 
component should be halted with a single character 
innovation. Every string S  has a unique exhaustive 
history [20]. 

Let us denote by cH (S)  the number of components 
in a history of S . The LZ complexity of S  is defined as 
c(S) = min cH (S){ } , where the minimum is over all 
histories of S . It can be shown that c(S) = cE (S)  where 
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cE (S)  is the number of components in the exhaustive 
history of S . 

A distance for strings based on the LZ-complexity 
was introduced in [19] and is defined as follows: given 
two strings, X  and Y , denote by XY  their 
concatenation then define 

d(X,Y ) := max c(XY )! c(X), c(YX)! c(Y ){ }.  

In [5], it was found that the following normalized 
distance  

d(X,Y ) :=
c(XY )!min c(X), c(Y ){ }

max c(X), c(Y ){ }
.      (2.1) 

performs well in classification and clustering of images. 
d  is normalized because c(XY )!min c(X), c(Y ){ }  
! c(X)+ c(Y )"min c(X), c(Y ){ } = max c(X), c(Y ){ } . 

We note in passing that (2.1) resembles the 
normalized compression distance of [7], which rely on 
data compression for approximating a string’s 
complexity. In contrast, the LZ-complexity is computed 
exactly with no need for a compressor. Note that d  is 
not a metric since a distance of 0  implies that the two 
strings are close but not necessarily identical. We refer 
to d  as a universal distance because it applies to any 
two individual strings with no assumption or prior 
knowledge about the problem or source that generated 
them. d  only depends on the LZ-complexity of each of 
the two strings (and their concatenation), which does 
not assume anything about the origin or the source of 
the strings. 

3. IMAGE DISTANCE 

Based on (2.1), we now define a distance between 
images. The idea is to convert each of two images I  
and J  into strings X ( I )  and X (J )  of characters from a 
finite alphabet of symbols. Once in string format, we 
use d(X ( I ) , X (J ) )  as the distance between I  and J . 
The details of this process are described in Procedure 
UID. 

Procedure UID (Universal Image Distance) 

1. Input: two color images I , J  in jpeg format (RGB 
representation) 

2. Transform the RGB matrices into gray-scale. Each 
pixel is now a single numeric value in the range of 
0  to 255 . We refer to this set of values as the 
alphabet and denote it by A .  

3. Scan each of the grayscale images from top left to 
bottom right and form a string of symbols from A . 
Denote the two strings by X ( I )  and X (J ) .  

4. Compute the LZ-complexities: c X ( I )( ) , c X (J )( )  and 

the complexity of their concatenation c X ( I )X (J )( )   

5. Output: UID(I , J ) := d X ( I ) , X (J )( ) .  

The transformation into gray-scale is a matter of 
representational convenience and in this paper, we 
only deal with classifying images based on their gray-
scale versions. Clearly, classifying color images is an 
easier problem since color information adds significant 
information, for instance, detecting fire in an image of a 
forest is much easier with a color image than with 
grayscale. As a note in passing, in order to deal with 
color images without this transformation, one can 
create a three-dimensional alphabet’ whereby each 
’letter’ in this alphabet corresponds to an RGB triple 
with each component in the range of 0  to 255 . Strings 
would comprise of sequences of such three-
dimensional symbols whose LZ-complexity can be 
computed, albeit taking considerably more time. This 
way color information about the image can be included 
in the string representation. 

Figure 1 displays hierarchical clustering of images 
of objects from categories cars , trucks  using the UID; 
it is based on a matrix of distances between all pairs of 
objects (Table 1). The labels b  through g  in the 
dendrogram correspond to the labels of the objects (b)  
to (g) . The vertical axis of the dendrogram indicates 
the distance value (which by definition is between 0  
and 1 ). There are two clearly distinguishable clusters 
and they correspond to the two category groups of 
objects. The categories of the images are not given to 
the clustering algorithm but only the distance values 
hence the UID successfully measures objects of the 
same category as closer than objects from different 
categories.  

Another example with three categories is displayed 
in Figure 2, which is based on a distance matrix of 
Table 2. Here too the UID succeeds and measures 
objects of different categories as more distant than 
objects from the same categories.  

4. ALGORITHM 

In this section we describe the parallel distributed 
processing algorithm for extracting features and 
learning image classification. Given a set of images, 
the algorithm produces the corresponding cases 
(feature vectors) that can be used by any supervised 
learning algorithm to learn the image classification task. 
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Figure 1: Hierarchical clusters of images of objects from two categories trucks  and cars ; distances based on Procedure UID. 
As can be seen, the UID is able to distinguish between trucks and cars and place them in distinct clusters.  

 

Table 1: Distance Matrix for Objects in Figure 1 

Image f e g c d b 

f 0.001 0.842 0.85 0.901 0.89 0.911 

e 0.85 0.001 0.862 0.891 0.9 0.904 

g 0.845 0.846 0.001 0.886 0.898 0.915 

c 0.889 0.875 0.883 0.001 0.882 0.881 

d 0.893 0.892 0.902 0.893 0.001 0.902 

b 0.897 0.888 0.906 0.877 0.883 0.001 

 

 
Figure 2: Hierarchical clusters of images of objects from three categories buses , trucks  and cars ; distances based on 
Procedure UID. The UID is able to distinguish between buses, trucks and cars and place them in distinct clusters. This is based 
on the patterns that it picks out in the string-representation of these images. 
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Table 2: Distance Matrix for Objects in Figure 2 

Image  c b e d g f 

c 0 0.888 0.893 0.902 0.921 0.926 

b 0.892 0 0.892 0.9 0.92 0.928 

e 0.889 0.89 0 0.879 0.916 0.917 

d 0.896 0.896 0.882 0 0.91 0.915 

g 0.915 0.912 0.909 0.902 0 0.87 

f 0.921 0.916 0.92 0.91 0.869 0 

 

The algorithm is designed for scalable distributed 
computations and takes advantage of relatively 
inexpensive yet massively-parallel GPU processors 
that are ubiquitous in today’s technology. 

The algorithm is divided into several stages. The 
first, which we denote as Algorithm 2P, is presented in 
section 4.2. It selects prototype images for each of the 
feature categories. A prototype image of a feature 
category is defined as a small image that has some 
repetitive pattern of texture which may appear, perhaps 
at different scales, in local regions of typical images 
that have this feature. The second stage is Algorithm 
3P which is described in section 4.3. It computes the 
cases (feature vectors) for images in the input set. The 
final stage is Algorithm 4 (section 4.4) which uses the 
cases for training any supervised learning algorithm. 

At the very basis of the algorithm, there are three 
procedures, each designed to work in a parallel 
processing manner. We describe them in the next 
section. 

4.1. Procedures 

Procedure LZMP (Lempel-Ziv Massively Parallel) is 
described on page 10. It takes a string and computes 
its LZ-complexity, building the exhaustive history (as 
described in section 2) by searching for the 
components in parallel. Compared to the standard 
serial procedure of computing the LZ-complexity of a 
string, LZMP has a speedup factor which is linear in the 
number of computing cores [2]. The implementation of 
Procedure LZMP in CUDA is described in [1] section 
3.3.  

Let us define the function,  

dp(X,Y ,a,b) :=
LZMP(XY )!min a,b{ }

max a,b{ }
     (4.1) 

where a , b  are the LZ-complexity values of the string 
X , Y , respectively. This function computes the 
distance (2.1) where the complexity c(XY )  of their 
concatenation is computed by LZMP while the 
complexity values, a , b , of the individual strings, X , 
Y  is given (precomputed at an earlier stage). dp  is 
used in procedure DMat, step 3, when computing the 
distance between all pairs of strings that are elements 
of two vectors. 

A key to our parallel approach is to compute 
distances between multiple subregions of an image 
and prototypes from all categories, in parallel. This is 
achieved by Procedure VLZMP page 11, which 
computes the LZ-complexity of all elements of a vector 
of strings and executes the LZMP procedure multiple 
times in parallel. The implementation of Procedure 
VLZMP in CUDA is described in [1] section 4.2. 

Procedure DMat page 11 computes in parallel the 
distance dp  between every pair of elements of two 
vectors of strings. It uses VLZMP to precompute the 
LZ-complexity of each individual string of the two 
vectors and then computes dp  in parallel for all pairs. 
The variable ip,q  denotes an index variable of the 
computing block Bp,q  (each block has its own local 
memory and set of variables). The implementation of 
Procedure DMat in CUDA is described in [1] section 
5.3. 

4.2. Algorithm 2P 

Our approach to image classification is to extract 
features automatically by computing distances from a 
set of prototypes images that are selected manually, 
before learning. Algorithm 2P, displayed on page 11, 
queries the user iteratively for these prototypes, for 
each feature category. It displays a dendrogram of the 
hierarchical clusters of these prototypes. If clusters are 
formed such that they correspond to the feature 
categories then Algorithm 2P halts which indicates that 
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the prototypes are good. Subsequently, they are used 
by Algorithm 3P. 

Since Algorithm 2P involves the user in providing 
candidates as image prototypes and interpreting the 
dendrogram, there are some basic heuristic guidelines 
for the user to follow in order to select good prototypes. 
As an example, consider the Banja Luka dataset [18] 
(discussed in more details in section 5) which consists 
of six categories of aerial images: houses , cemetery , 
industry , field , river  and trees . 

Figure 3 shows typical images from this dataset. In 
this particular problem, we let the feature categories be 
the classification categories themselves. In general, the 
feature categories may be different and more specific 
than the classification categories and there can be 
more than one feature category for every classification 
category. 

Figure 4 shows an image of category houses and 
the selected prototypes of smaller size taken from this 
image. Each prototype is predominantly made of a 
single texture. The left and bottom prototypes capture 
the texture of roofs while the right prototype captures 
the texture of a street. Both, roofs and streets make up 
features of the category houses. 

To explain the heuristic of prototype selection, we 
start by showing what happens when one chooses bad 
prototypes. Figure 5 displays these prototypes which 

are numbered as follows: 1 - 4 (cemetery), 5 - 8 (field), 
9 - 12 (houses), 13 - 16 (industry), 17 - 20 (river), 21 - 
24 (trees). They are considered bad because each 
contains more than a single feature of its category; for 
instance, prototypes of category houses contain not 
only images of houses but also of streets and 
vegetation, which appear in other categories. This can 
lead to a similarity between prototypes of different 
categories and result in a higher misclassification error. 
One can see in these prototypes an object or a region 
with texture that is not characteristic of the 
corresponding category. Algorithm 2P detects this fact 
and displays a dendrogram with bad clusters, for 
instance, prototypes 5 to 8 do not belong to the same 
cluster, as seen in Figure 6. This leads to poor 
accuracy results, as reported in section 5.  

 
Figure 4: Selecting prototypes. 

 
Figure 3: Examples of images from which prototypes are selected. Prototypes are depicted by the small rectangular parts. They 
are easily chosen by a non-expert. 
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For this same problem, Figure 7 displays a set of 
good prototypes numbered as follows: 1 - 4 (cemetery), 
5 - 8 (field), 9 - 12 (houses), 13 - 16 (industry), 17 - 20 
(river), 21 - 24 (trees). In each category, we selected 
prototypes that each possesses predominantly a single 
texture that is characteristic of the category. The aim is 
not to include more than a single feature in a single 
prototype. In this particular problem, since we chose 
feature categories as the classification categories, then 
prototypes in the same category had a similar texture 
while those in different categories had different texture. 
Clear hierarchical clusters are formed that correspond 
to the classification categories, as displayed in the 
dendrogram of Figure 8. One advantage of the UID is 
the fact that we can measure the distance between a 
pair of images of different sizes. This enables one to 
choose prototypes that are small while leaving the size 
of the input image different. Being small means that a 
prototype can be made to have a single, or few, 

features of its category and this is desirable as 
mentioned above.  

4.3. Algorithm 3P 

Algorithm 3P, displayed page 12 and page 13, uses 
the prototypes selected by Algorithm 2P and computes 
for every image in the input set a feature vector 
(training case). Algorithm 3P reads every input image 
and divides it into a number of non-overlapping square 
(window) regions, denoted as sub-images. It then 
outputs a case which consists of the proportion number 
of times that a prototype was closest to any of these 
sub-images. Each component of the case represents 
this proportion for a different prototype. The algorithm 
utilizes a number of computing blocks which begin to 
run in parallel in step 12 . Steps 6  to 11  which run in 
serial are responsible for converting each of the N  
input images Ii  into a vector vi  of strings Xi, j  that 

correspond to sub-images I j
(i )  of Ii , 1! i ! N , and 

 
Figure 5: Examples of bad prototypes. They contain features that appear in more than one category, for instance, the 
prototypes for houses contain not only houses but also streets and vegetation which appear in other categories.  

 

 
Figure 6: Dendrogram corresponding to bad prototypes. For instance, prototypes 5 and 8 which are from the field category are 
not in the same local cluster. 
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converting each of the L  prototype images into strings 
which together form the vector u . Figure 9 depicts an 
example of an input image Ii  which is split into sixteen 
sub-images I j

(i ) , 1! j !16 , shown in Figure 10.  

 
Figure 9: Example of an input image. 

 
Figure 10: Sub-images of the image in Figure 9 obtained by 
Algorithm 3P. 

 
Figure 7: Good prototypes for the Banja Luka dataset. 

 

 
Figure 8: Dendrogram of good prototypes in Figure 7. Based on the UID, hierarchical clustering discovers the six clusters that 
correspond to the six categories of prototypes in Figure 7. 



A Parallel Computation Algorithm for Image Feature Extraction Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6      9 

Next, we highlight some of the main steps of 
Algorithm 3P. Each computing block Bq  (there are a 
total of Q  blocks) processes one image at a time thus 
a total of Q  images are processed in parallel at any 
given time. A block Bq , which on a typical GPU may 
use thousands of threads in parallel, executes 
Procedure DMat on a pair of vectors viq  and u , where 

viq  consists of the strings that correspond to all sub-

images of image Iiq . On Block Bq  Procedure DMat 

returns a matrix Dq  whose component Dq[ j, k]  is the 

UID value between the kth  prototype and j th  sub-
image of image Iiq . Block Bq  then determines for each 

subimage of image Iiq  the closest prototype to it (the 

winner), and keeps the count of the number of times 
that a prototype won and eventually produces the case 

for that image. The above is repeated until all images 
Ii  are processed, 1! i ! N , where, except possibly for 
the last iteration, there are always Q  images being 
processed concurrently. Table 3 displays cases 
produced by Algorithm 3P for four input images shown 
in Figure 11 with one prototype per category hence the 
dimension of a case equals the number of categories. 

4.4. Algorithm 4 

Given the input set I  of N  images, as described in 
the previous section, Algorithm 3P produces a set R  of 
L -dimensional normalized feature vectors, where 

L =
l=1

M
! Ll  is the total number of prototypes. Denote by 

T  the category target variable according to which the 
images are to be classified and denote by !  the set of 
values that T  takes. In the transportation problem 
(section 1), the set !  consists of the six category 
values. Label each case with the category of the image 

 
Figure 11: Input images. 

 

Table 3: Cases Produced by Algorithm 3P for Images in Figure 11 

  trees cemetery industry river houses field 

Figure 11a 0 0 0 0 0.125 0.875 

Figure 11b 0 0 0 0 0.0625 0.9375 

Figure 11c 0 0 0.125 0.0625 0.8125 0 

Figure 11d 0 0 0.125 0 0.875 0 
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that it represents and let the resulting set of labeled 
cases be denoted by DT . The process of learning 

classification from DT  is described in Algorithm 4 on 
page 14. 
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5. EXPERIMENTS AND RESULTS 

In this section, we describe experiments and report 
on the classification accuracy and the computational 
processing performance. The setup consists of a PC 
with a 2.8Ghz AMD Phenom II X6 1055T CPU (with six 
cores). A GPU hardware on this PC is a Tesla K20C 
board with a single GK110 GPU from Nvidia Corp.. 
This GPU is based on the Keppler architecture (with 
compute capabilities of 3.5). The algorithm is 
implemented on the CUDA programming platform 
(release 6.0) and the operating system is Ubuntu Linux 
2.6.38-11-generic. 

We started by testing the algorithm on several two-
category image classification problems that were 
obtained from the CALTECH-101 testbench image set 
[8]. We present one such problem of classification into 
the categories airplane and ketch (yacht). Ten 
prototypes of each category were chosen by collecting 
small images of airplanes and boats. The prototypes of 
airplane are of size 150 ! 70  pixels and the prototypes 
of ketch are of size 150 !130 . Figure 12 shows a few 
examples of such prototypes. The set of input images 
consists of 74  images of airplanes of size 420 ! 200  
and 100  images of yachts of size 300 ! 300 . It takes 
345  seconds for Algorithm 3P to produce the 174  
cases from the input image set. Figure 13 displays two 
examples of input images, one from category airplane 
and one from ketch along with their corresponding 
partition into sub-images of size 150 !150  (obtained in 
Algorithm 3P, step 7, om page 17). As mentioned in 
section 4.2 the algorithm permits the size of prototypes 
to differ and the size (or number) of sub-images to 

differ from one feature category to another.  We ran 
four learning algorithms, multi-layer perceptrons, 
decision trees J48, naive-Bayes and lazy IB1, on a ten-
fold cross validation using the 174  input images. Table 
4 presents the accuracy results versus the baseline 
algorithm (rules.ZeroR), which classifies based on the 
prior class probability. The configuration parameter 
values of the learning algorithms used in WEKA [11] 
are displayed under the accuracy result. As can be 
seen, the J48  decision tree learner achieves the 
highest accuracy of 96.54%  (relative to the baseline 
accuracy of 57.52% ). 

Next, we considered a problem of recognizing 
different image textures. The input set consists of the 
1000  images of the Texture Database [13] test-bench 
which has 25  categories of various types of real 
textures, for instance, the texture of glass, water, wood, 
etc.. Each category has 40  images of size 640 ! 480 . 
We chose as feature categories the classification 
categories themselves and selected five small 
prototypes of size 150 !150  from each one without 
using Algorithm 2P (just picking parts of images in a 
random way to be prototypes). It takes about 25  hours 
for Algorithm 3P to produce 1000  cases corresponding 
to the images. We ran the following classification 
learning algorithms: lazy IB1, decision trees J48, multi-
layer perceptrons, naive Bayes, random forest. Ten 
fold cross validation accuracy results are displayed in 
Table 5 (parameter settings are displayed under the 
accuracy results). As shown, the best obtained 
accuracy result is 70.73%  which is achieved by the 

 
Figure 12: Three prototypes from category airplane. 
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random forest algorithm; this is 17.6  times better than 
the baseline ZeroR classification rule. 

As the final problem, we tested the algorithm on the 
classification of aerial images. We used the Banja Luka 
dataset1 from [18] which consists of the six categories 
                                            

1Available: http://dsp.etfbl.net/aerial/ 

(mentioned in section 4.2) and 606  images of size 
128 !128  pixels. As the feature categories, we use the 
categories themselves. Four prototypes from each 
feature category were selected in a way that captures 
the different textures that we see in typical images of 
that category. As mentioned above, a main advantage 
of our approach is that the selection of prototypes can 
be done by a non-expert and does not involve any 
sophisticated data analysis or interpretation. Figue 14 

Table 4: Classification Result for Airplane v.s. ketch Problem  

Dataset (1) (2) (3) (4) (5) 

airplane-ketch  57.52  83.65  !   93.82  !   96.54  !   86.75  !  

 ! , •  statistically significant improvement or degradation 
(1) rules.ZeroR ” 48055541465867954 
(2) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779 
(3) lazy.IB1 ” -6152184127304895851 
(4) trees.J48 ’-C 0.25 -M 2’ -217733168393644444 
(5) bayes.NaiveBayesMultinomialUpdateable ” -7204398796974263186 
 

 
Figure 13: Input images from category airplane and ketch and their respective sub-images. 

 

Table 5: Classification Result for the Texture Problem 

Dataset (1) (2) (3) (4) (5) (6) 

cat-40img 4.00 63.16  !  58.59  !  66.50  !  61.92  !   70.73  !  

 ! , •  statistically significant improvement or degradation. 
(1) rules.ZeroR ” 48055541465867954  
(2) lazy.IB1 ” -6152184127304895851  
(3) trees.J48 ’-C 0.25 -M 2’ -217733168393644444  
(4) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779  
(5) bayes.NaiveBayesMultinomialUpdateable ” -7204398796974263186  
(6) trees.RandomForest ’-I 100 -K 0 -S 1’ -2260823972777004705  



16     Journal of Advances in Applied & Computational Mathematics, 2019, Vol. 6 Belousov and Ratsaby 

displays the set of prototypes that were used. It takes 
0.9  second for Algorithm 2P to run, namely, to read 
the 21  prototype images, convert them into strings, 
compute the 212 = 441  pairs of inter-prototype 
distances, and finally write the distance matrix into an 
output file, which is then displayed as a dendrogram by 
an external Java-based code. 

Figure 3 shows examples of input images from the 
six categories and Figure 10 displays the 16  sub-
images that are created by Algorithm 3P for input 
image in Figure 9. It takes 223  seconds for Algorithm 
3P to produce the 606  cases. Note that this involves 
computing 606 !16 ! 21 = 203, 616  UID calculations. 
Each case corresponds to one input image, and is a 
vector of dimensionality 21  which consists of the 
normalized counts of the number of times that a 
prototype was closest to a submerge of the image. 

With the cases ready, we ran the following learning 
algorithms, SVM (libSVM), SMO, lazy.IBk, J48, 
RandomForest and RandomTree each on a ten-fold 
cross validation using the 606  cases that were 
produced by Algorithm 3P. Table 6 presents the 
accuracy results versus the baseline algorithm 
(rules.ZeroR), which classifies based on the prior class 
probability. The configuration parameter values of the 
learning algorithms, used in WEKA [11] are displayed 

under the accuracy result. As can be seen, the 
RandomForest learner achieves the highest accuracy 
of 80.42%  (relative to the baseline accuracy of 
29.37% ). The reason that the baseline accuracy is not 
(1 / 6)100%  is because the distribution of number of 
cases per category is not uniform. Our accuracy result 
is within the range of accuracies of 79.5%  to 87.3%  
reported in [18] who use more sophisticated and 
advancd image-processing based on ST-descriptors 
and a complex filter bank. Table 7 displays the 
confusion matrix for the Banja Luka problem as learnt 
by the RandomForest algorithm and is similar to the 
one reported in [18]. 

All the experiments that we have conducted, 
including the above, led us to use the heuristic of 
choosing prototypes (described in section 4.2). In 
selecting prototypes, every prototype should capture a 
characteristic of its feature category which is 
represented via the texture, rather than letting a 
prototype contain a mixture of many different textures. 
The confusion between images from the industry 
category, which are being classified as houses, is 
relatively high as can be seen from the fourth row of 
the confusion matrix (Table 7). Trying a different choice 
of prototypes for industry did not improve this 
misclassification but we believe that with some more 
trial and error, one can find prototypes that improve it. 

 
Figure 14: Prototypes for the Banja Luka dataset. 

Table 6: Classification Result for the BanjaLuka Problem, 24  Prototypes 

Dataset (1) (2) (3) (4) (5) (6) (7) 

Zone-21-16X16 30.36 54.07  !  73.89  !  70.53  !  72.58  !  80.42  !  66.42  !  

 ! , •  statistically significant improvement or degradation. 
(1) ZeroR ”  
(2) LibSVM ’-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model Weka-3-7 -seed 1’  
(3) SMO ’-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K PolyKernel -E 1.0 -C 250007’  
(4) IBk ’-K 1 -W 0 -A LinearNNSearch -A EuclideanDistance -R first-last’  
(5) J48 ’-C 0.25 -M 2’  
(6) RandomForest ’-I 100 -K 0 -S 1 -num-slots 1’  
(7) RandomTree ’-K 0 -M 1.0 -V 0.001 -S 1’  
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Considering how little effort and no-expertise is 
needed in our approach to learning image 
classification, and the naive representation of an image 
as a string of symbols, it is surprising that we obtained 
accurate classification rates on a variety of problems; in 
the Banja Luka test bench, our best result is in the 
accuracy range of results reported in [18] who use 
sophisticated image descriptors. 

Our algorithm can serve well in settings with little or 
no domain knowledge and relying solely on a non-
expert to select the prototypes. The algorithm can also 
serve as a starting point from which more sophisticated 
analysis and specialized feature extraction can be 
made. Lastly, the cases produced by Algorithm 3P may 
also be used for unsupervised learning and to learn 
clustering of images. 
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