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Abstract: In this article we study the following nonlinear problem of Kirchhoff-Schrödinger-Poisson equation with pure 
power nonlinearity  
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where a,b  and V  are positive constants, and 3 < p < 5 . Using the fountain theorem, we obtain infinitely many high 
energy radial solutions, where some new tricks associated with the scaling technique are introduced to overcome the 
difficulty caused by the combination of two nonlocal terms. 
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1. INTRODUCTION 

 This article is concerned with the following 
nonlinear Kirchhoff-Schrödinger-Poisson type equation  
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where a,b  and V  are positive constants, and 
3 < p < 5 , which is the special case for more general 
form  
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          (1.2) 

As being nonlocal terms, problem (1.2) arises in 
various models of physical and biological systems, and 
the research for related issues gives rise to more 
mathematical difficulties and challenges. Indeed, when 

0=µ , problem (1.2) reduces to the following Kirchhoff 
type equation  

 
!(a+b

!3" |#u |2 dx)$u+V (x)u = f (x,u), x % !3,     (1.3) 

which corresponds to the stationary counterpart 
associated with more general equation than the 
following: 
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Equation (1.4) was proposed [8] as an extension of 
the classical D’Alembert wave equation for free 
vibrations of elastic strings, which took the length of the 
string produced by transverse vibrations into account. 
After the pioneer work of Lions [13], where a functional 
analysis approach was established, Kirchhoff type 
problems began to attract comprehensive attention of 
mathematicians. Recently, problem (1.3) has been 
extensively investigated by many researchers using the 
variational methods, see for example [3, 6, 7, 12, 19]. 

When a =1  and b = 0 , problem (1.1) reduces to the 
following nonlinear Schrödinger-Poisson equation  

 

!"u+V (x)u+µK(x)#u = f (x,u), x $ !3

!"# =µK(x)u2, x $ !3,

%
&
'
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    (1.5) 

which describes a charged wave interacting with its 
own electrostatic field [4]. Since then, there are huge 
literatures on the investigation of the existence and 
behaviors of the solutions of problem (1.5). Some of 
interesting results obtained by variational methods can 
be found in [1, 2, 5, 16, 18] and the references listed 
therein. 

Inspired by the works mentioned above, many 
authors recently considered problem (1.2), see for 
example [11, 14, 15, 17, 21] and the references 
mentioned therein. Different from (1.3) and (1.5), 
problem (1.2) has two nonlocal terms, which implies 
that problem (1.2) is no longer a point-wise identity and 
brings some additional difficulties. Therefore, more 
delicate techniques are needed to deal with the effect 
of combination of the two nonlocal terms. Here, we 
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must point out that all the existing results are 
concerned with the existence of positive solutions, 
except for [21], in which the author showed that 
problem (1.2) possesses infinitely many small energy 
solutions using the symmetric mountain pass theorem 
established by Kajikiya for the case that V (x)  satisfies 
some coercive condition and f (x,u)  is of sublinear 
growth at infinity, see its Theorem 1.1. For more 
generalized form of problem (1.2), one can find the 
corresponding results in recent papers [9, 10]. 
Motivated mainly by [11, 14, 15, 17, 21], the purpose of 
the present paper is to investigate the existence of 
infinitely many high energy solutions of problem (1.1). 
As far as we know, this is the first result concerned with 
the existence of infinitely many high energy solutions 
for Kirchhoff-Schrödinger-Poisson type equation. 

Now, we present our main result.  

Theorem 1.1 Suppose that 3 < p < 5 , then problem 
(1.1) possesses infinitely many high energy radial 
solutions  {uk}k!!  such that  
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as k!+" .  

Remark 1.2 In our Theorem 1.1, we consider 
problem (1.2) for the special case that V (x) = const  and 
f (x,u) =| u |p!1 u  with 3 < p < 5 . It is obvious that the 

primitive F(u) =
0

u
! | s |p"1 sds = | u |

p+1

p+1
 of f (x,u)  is 4-

superlinear at infinity. Therefore, it is natural to ask 
whether problem (1.1) has the same conclusion as in 
our Theorem 1.1 for 1 < p ! 3  or not.  

To complete the proof of Theorem 1.1, we apply the 
well-known fountain theorem. The main difficulty during 
the process of its proof is to verify the Cerami condition 
for the corresponding functional to problem (1.1). Due 
to the combination of the two nonlocal terms 

 
(
!3! |"u |2 dx)2  and 

 !3! "uu
2dx  in the functional, we 

could not reach this point as the previous routine for 
just with one nonlocal term. In order to demonstrate the 
invalidity of Cerami condition for our consideration, we 
adopt the scaling technique as done in some previous 
works. However, it is impossible for us to determine the 
uniform exponent in the scaling technique form. 
Fortunately, we can choose changing exponent !  and 
!  corresponding to the selected form !"#u(!"$x)  for 
different 3 < p < 5 , see the details in Section 3. Based 
on this novelty, we can check the validity of the Cerami 

condition and the other hypotheses of the fountain 
theorem, and then finish the proof of Theorem 1.1. 

The remainder of this paper is arranged as follows. 
In Section 2, some preliminary results and lemmas are 
presented. The proof of Theorem 1.1 is accomplished 
in Section 3. 

Throughout this paper, C > 0  denotes various 
positive generic constants. 

2. PRELIMINARY RESULTS 

In this section, we present some preliminary results, 
which will be used to prove Theorem 1.1. For any 
1! q < +" , we denote by u q  the Lq -norm of a function 

 u ! Lq (!3) . In our context, for the convenience, we 
have introduced an equivalent norm on  H

1(!3)  defined 
as  

 
u = (

!3! (a |"u |2 +Vu2 )dx)
1
2 ,  

and  D
1,2 (!3) = {u ! L6 (!3) :|"u |! L2 (!3)} . 

We recall that by the Lax-Milgram Theorem, for 
every  u ! H 1(!3) , there exists a unique  !u " D1,2 (!3)  
such that !"#u = u

2  in a weak sense. Moreover, !u  
satisfies some certain properties: !u " 0  and 

 
!u D1,2

2 =
!3" !uu

2 #C u 4 , see [15, Lemma 2.1]. 

Substituting !u  into problem (1.1), we can rewrite (1.1) 
into the following equivalent equation  

 
!(a+b

!3" |#u |2 dx)$u+Vu+%uu =| u |
p!1 u.      (2.1) 

To rule out the lack of compactness of the effect of 
the translations, we consider  Hr

1(!3)  and  Dr
1,2 (!3)  the 

corresponding subspace of radial functions, 
respectively. Then, the embedding  Hr

1(!3)! Lq (!3)  for 
q ! (2,6)  is compact, see [20, Corollary 1.26]. In 
addition, since the embedding  H

1(!3)! Lq (!3)  
(2 ! q ! 6)  is continuous, see [20, Theorem 1.8], then 
the embedding  Hr

1(!3)! Lq (!3)  (2 ! q ! 6)  is also 
continuous. 

Hence, we can define the corresponding energy 
functional  J :Hr

1(!3)!!  to problem (2.1) as follows:  

 

J(u) =

1
2 !3! (a |"u |2 +Vu2 )dx+ b

4
(
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+
1
4 !3! #uu

2dx $ 1
p+1 !3! | u |p+1 dx.

      (2.2) 
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It is standard to show that J  belongs to 

 C
1(Hr

1(!3),!)  and its Gâteaux derivative is given by  

 

! "J (u), v# =
!3$ (a%u%v+Vuv)dx + b

!3$ |%u |2 dx
!3$ %u%vdx

+
!3$ &uuvdx ' !3$ | u |p'1 uvdx, (v ) Hr

1(!3 ).

          (2.3) 

It is well known that the solutions for problem (2.1) 
correspond to the critical points of the functional J . 

In order to prove Theorem 1.1, we shall use the 
following fountain theorem. Let {ej} j=1

n  be a total 
orthonormal basis of X  and define  

 
Xj =!ej , Yk =

j=1

k

!Xj , Zk =
j=k+1

"

!Xj , k # ".      (2.4) 

Then, X =
j=1

!

" Xj  and Yk  is finite dimensional. 

Definition 2.1 Let X  be a Banach space, we say 
that  J ! C1(X,!)  satisfies Cerami condition at the level 

 c ! ! ((C)c in short)  if any sequence {un}! X  
satisfying J(un )! c  and (1+ un ) !J (un )" 0  as n!+"  
has a convergent subsequence. J  satisfies Cerami 
condition if J  satisfies (C)c  condition at any  c ! ! .  

Lemma 2.2 ([20, Theorem 3.6]) Let X  be an infinite 
dimensional Banach space. Assume that  J ! C1(X,!)  
satisfies (C)c  condition, J(!u) = J(u)  for all u ! X . For 
every  k ! ! , there exist !k > rk > 0  such that  

(i) bk := u!Zk , u =rkinf J(u)"+# as k"+# ;  

(ii) ak := u!Yk , u ="kmax J(u)# 0 .  

Then, J  has a sequence of critical points {uk}  
such that J(uk )!+" .  

Before going to implement the process of the proof 
of Theorem 1.1, as pointed out in Section 1, we need to 
discuss some properties for the scaling technique, 
which plays an essential role in testing the Cerami 
condition. For each given  u ! Hr

1(!3) \ {0} , let us 
consider the paths defined by !(") = "#$u("#%&), " > 0 , 
where ! < 0  and ! > 0 . 

Proposition 2.3 For any fixed  u ! Hr
1(!3) \ {0} , 

there exists a unique !u > 0  (dependent on !  and ! )  
 
 

such that !("u )
2 = "u

#$u("u
#%&)

2
=1 . Moreover, !u " 0  

as u !+" .  

Proof. After a direct calculation, we can obtain  

 
!(") 2 = "#2$+%

!3& a |'u |2 dx+ "#2$+3%
!3& Vu2dx,  

which yields that !"0+lim #(!) 2 = 0  and 

!"+#lim $(!) 2 =+# . In addition, it is obvious that 

!(") 2  is monotone increasing. Therefore, the 
conclusion is evidently reached.  

Remark 2.4 Based on Proposition 2.3, it allows us 
to define the one-to-one mapping 

 
F!u :Hr

1(!3)" S  by 

F!u (u)(x) = !u
"#u(!u

"$x) , where  S = {u ! Hr
1(!3) : u =1}  is 

the unite sphere. The inverse of F!u  is given by 

F!u
"1(u)(x) = !u

#u(!u
$x) .  

3. PROOF OF THEOREM 1.1 

The purpose of this section is to finish the proof of 
Theorem 1.1 with the aid of the fountain theorem. For 
this aim, we need to demonstrate that all conditions of 
Proposition 2.2 are satisfied. 

In what follows, with the help of Proposition 2.3 and 
Remark 2.4, we check the corresponding functional J  
satisfies the Cerami condition.  

Lemma 3.1 The functional J  satisfies (C)c  
condition for any  c ! ! .  

Proof. Let  un ! Hr
1(!3)  be such that  

J(un )! c and (1+ un ) "J (un )! 0 as n!+#.     (3.1) 

Firstly, we prove that {un}  is bounded in  Hr
1(!3) . 

To this end, we argue by contradiction. Suppose that 
un !+"  as n!+" . Then, by the preceding 

arguments in Section 2, there exists !n := !un  such that 

!n
"#un (!n

"$x)
2
=1  and !n " 0  as n!+" . Consider the 

sequence  {vn}! Hr
1(!3)  defined by vn (x) := !n

"#un (!n
"$x) , 

then vn
2 =1  and un (x) = !n

"vn (!n
#x) . Moreover, 

 meas{x ! !
3 :vn (x)" 0} > 0  for n  large enough. It 

follows from (2.2), (2.3) and (3.1) that there exists 
some constant C > 0  such that  
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C ! J(un )"
1
2
# $J (un ),un % = "

b
4
(
!3& |'un |

2 dx)2 "

1
4 !3& (un

un
2dx + p "1

2(p +1) !3& | un |
p+1 dx

= "
b
4
)n
4*"2+ (

!3& |'vn |
2 dx)2 " 1

4
)n
4*"5+

!3& (vn
vn
2dx + )n

*( p+1)"3+ p "1
2(p +1) !3& | vn |

p+1 dx.

     (3.2) 

For any fixed p ! (3,5) , we can choose reasonable 
! < 0  and ! > 0  such that  

2! < "(3# p),         (3.3) 

which leads to one contradiction as n!+"  in the 
above inequality (3.2). Thus, {un}  is bounded in 

 Hr
1(!3) . So, up to a subsequence, we may assume 

that un ! u  in  Hr
1(!3)  and un ! u  in  L

q (!3) , 2 < q < 6 . 
Meanwhile, from (2.3) and (3.1), one deduces that  

 

on (1) = ! "J (un )# "J (u),un # u$ = (a + b !3% |&un |
2 dx)

!3% |&(un # u) |
2

dx +
!3% V | un # u |

2 dx + (
!3% 'un

un (un # u)dx # !3% 'uu(un # u)dx)

#b
!3% (|&u |2 # |&un |

2 )dx
!3% &u&(un # u)dx

#(
!3% | un |

p#1 un (un # u)dx # !3% | u |p#1 u(un # u)dx).

 (3.4) 

In view of the Hölder’s inequality, we can easily 
obtain that  

 

!3! | un |
p"1 un (un "u)dx# 0

and
!3! | u |p"1 u(un "u)dx# 0,

      (3.5) 

since un ! u  in  L
q (!3)  for 2 < q < 6 . In addition, on 

account of the continuity of the embedding 

 Hr
1(!3)! Lq (!3)  and the properties of !un

, we have  

 

!3! "un
un (un #u)dx $ "un 6

un 2
un #u 3

$C "un D1,2
un 2

un #u 3
$C un

3 un #u 3

% 0 as n%&.

     (3.6) 

Similarly, it holds that  

 !3! "uu(un #u)dx$ 0 as n$%.      (3.7) 

On the other hand, due to the fact that the 
embedding  Hr

1(!3)!Dr
1,2 (!3)  is continuous, we also 

arrive to the conclusion that  

 
b

!3! (|"un |
2 # |"u |2 )dx

!3! "u"(un #u)dx = on (1).     (3.8) 

 

Thus, (3.4)-(3.8) lead to  

 

on (1) = ! "J (un )# "J (u),un #u$ % un #u
2
+

(
!3& 'un

un (un #u)dx # !3& 'uu(un #u)dx)

#b
!3& (|(u |2 # |(un |

2 )dx
!3& (u((un #u)dx

#(
!3& | un |

p#1 un (un #u)dx # !3& | u |p#1 u(un #u)dx),

 

which yields un !u " 0  as n!+" .  

Remark 3.2 Due to the fact that 3 < p < 5 , we could 
not choose uniform !  and !  to guarantee that (3.3) 
holds true. However, for any fixed p ! (3,5) , one can 
always determine suitable ! < 0  and ! > 0  to ensure 
that (3.3) makes sense.  

Now, we are in the position to establish the proof of 
Theorem 1.1. In view of Lemma 3.1, we divide the 
process into three steps. Let {ej}  be an orthonornal 

basis of  Hr
1(!3)  and define Xj , Yk  and Zk  the same 

as in (2.4).  

Proof. Claim 1: Assume that 3 < p < 5 , then there 
exists rk > 0  such that u!Zk , u =rkinf J(u)"+#  as k!+" . 

By [20, Lemma 3.8], for any 3 < p < 5 , we have 
!k := u"Zk , u =1

sup u
p+1
# 0  as k!+" , where !k  is also 

dependent on p . For each k !1 , choosing 

rk := (
p+1
4!k

p+1 )
1
p"1 . Then, for 3 < p < 5 , we have rk !+"  as 

k!+" . Subsequently, for u ! Zk  with u = rk , in view 
of (2.2), we obtain  

 

J(u) = 1
2
u 2

+
b
4
(
!3! |"u |2 dx)2

+
1
4 !3! #uu

2dx $ 1
p+1 !3! | u |p+1 dx

%
1
2
u 2

$
1
p+1

u
p+1

p+1
%
1
2
u 2

$
&k
p+1

p+1
u p+1

%
1
4
u 2 = rk

2

4
,

 

which implies that Claim 1 holds true.  

Claim 2: For the subspace Yk ! E , there exists 
!k > rk  such that u!Yk , u ="kmax J(u)# 0 . 

By Proposition 2.3 and Remark 2.4, we note that for 
any  u ! Hr

1(!3) \ {0} , there exists a unique !u > 0  such  
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that !u
"#u(!u

"$ )x =1  and !u " 0  as u !+" . Let 

v(x) := !u
"#u(!u

"$x) , then v =1  and u(x) = !u
"v(!u

#x) . 
Therefore, one has  

 

J(u) = 1
2
u 2

+
b
4
(
!3! |"u |2 dx)2 + 1

4 !3! #uu
2dx

$
1
p+1 !3! | u |p+1 dx

%
1
2
&u
2'$( v 2

+
1
2
&u
2'$3( v 2

+
b
4a2

&u
4'$2( v 4

+
C
4
&u
4'$5( v 4

$
&u
'( p+1)$3(

p+1
v

p+1

p+1 .

    (3.9) 

Since, on the finite dimensional subspace Yk , all the 
norms are equivalent, there exists Ck > 0  such that  

u
p+1
!Ck u , "u #Yk .      (3.10) 

Hence, combining (3.9) with (3.10), we can 
conclude that  

J(u)! 1
2
"u
2#$% v 2

+
1
2
"u
2#$3% v 2

+
b
4a2

"u
4#$2% v 4

+
C
4
"u
4#$5% v 4

$
"u
#( p+1)$3%

p+1
Ck

p+1 v p+1 := &("u ).
 

Choosing the same !  and !  as in (3.3) for any 
fixed p ! (3,5) , then u !+"lim J(u)# $u!0lim %($u ) = &" . 

Therefore, we infer that there exists Rk = R(Yk ) > 0  such 
that J(u) < 0  for all u !Yk  with u ! Rk . Hence, choose 
!k > max{Rk ,rk} , and so the claim is proved. 

Claim 3: Obviously,  J(0) = 0, J ! C1(Hr
1(!3),!)  and 

J  is even. Moreover, we notice from Lemma 3.1, 
Claim 1 and Claim 2 that all the conditions of Lemma 
2.2 are verified. Thus, problem (1.1) possesses a 
sequence of radial nontrivial solutions 

 {uk}k!! " Hr
1("3)  such that J(uk )!+" .  
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