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On Some Aspects of Generalized Extended Yule Distribution: 
Properties and Applications 

C. Satheesh Kumar* and S. Harisankar 

Department of Statistics, University of Kerala, Thiruvananthapuram, India 

Abstract: Martinez-Rodriguez (Comp. Statist. Dat. Anal., 2011) studied an extended version of the Yule distribution, 
namely “the extended Yule distribution (EYD)" which they obtained as a mixture of geometric distribution and 
generalized beta distribution. Through the present paper, we propose a generalized version of the EYD and named it 

“the generalized extended Yule distribution (GEYD)". Several statistical properties of the distribution are obtained, 
including probability generating function (p.g.f), moments, recursion formulae etc. The maximum likelihood estimation of 
the parameters of the GEYD is discussed and fitted to two real-life data sets for illustrating its usefulness compared to 
the existing models. Further, the generalized likelihood ratio test procedure is considered for testing the significance of 
the parameters of the GEYD. 
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1. INTRODUCTION 

Yule [1] considered a distribution through the 

following probability generating function (p.g.f), for 𝜌 > 0.  𝐺(𝑡) = 𝜌+1𝜌  2𝐹1[1,1; 𝜌 + 2;  𝑡]            (1) 

A distribution with p.g.f (1) was later known in the 

literature as “the Yule distribution"; hereafter, we 

denoted it as YD (𝜌). Simon [2] considered the Yule 

distribution as a model in the sociological field (number 

of words in a text by their frequency of occurrence, 

number of scientists by number of papers published, 

distribution of cities by population), in the biological 

field (distribution of biological genera by number of 

species) and the economics field (distribution of 

incomes by size). Kendall [3] utilized YD for describing 

certain types of bibliographic data sets. Haight [4] used 

YD to model word frequency data, and Xekalaki [5] 

applied the YD (𝜌) in an econometric context. Jones 

and Handcock [6,7] considered it as the underlying 

mechanism in the formation of social networks. It has 

also been studied by Dorogovtsev et al. [8] and Levene 

et al. [9] in the context of modelling the growth of the 

internet. Xekalaki and Panaretos [10] derived the YD 

as a discrete analog of the Pareto distribution. Singh 

and Vasudeva [11] characterized the exponential 

distribution via the Yule distribution.  

In [12-16] studied certain modified versions of the 

Yule distribution and described some of their 

applications. Martinez-Rodriguez [17] considered an 
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extended version of YD (𝜌) through the name “the 

extended Yule distribution (EYD)", which possess the 

following p.g.f, for 𝜌 > −2 and 0 < 𝜆 < 1.  𝐻(𝑡) = 𝜆 𝑡𝜆  2𝐹1[1,1; 𝜌 + 2]           (2) 

The EYD belongs to the family of distributions 

generated by the Gaussian hypergeometric function, 

and it can be expressed as a generalized beta mixture 

of a geometric distribution. The EYD has a similar 

genesis to YD, so it keeps the more relevant properties 

of the YD, but it also has a new parameter that allows 

control of the right tail of the distribution, and the effect 

of infinite variance is not possible. The main objective 

of the present paper is to develop a generalized 

version of EYD so as to make its modeling suitable for 

more complex data sets having heavy tails. The 

proposed class of distribution was termed “the 

generalized extended Yule distribution (GEYD)" and it 

has been obtained through compounding generalized 

geometric distribution with the generalized beta 

distribution. Further, it can be noted that the GEYD is 

over-dispersed (variance more significant than the 

mean) for 𝜌 ≥ −1 and under-dispersed (variance 

smaller than the mean) if −2 < 𝜌 < −1. This indicates 

the utility of the model to both over-dispersed and 

under-dispersed data sets. The GEYD is fitted to two 

real-life data sets and observed that the GEYD allows 

better fits compared to the other related generalized 

version of YD available in the literature. 

The rest of the paper is organized as follows. In 

Section 2, we present a genesis of the GEYD and 

derive its important properties such as its p.g.f., 

expressions for its mean and variance, recursion 

formulae for its probabilities, raw moments, and 
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factorial moments. In Section 3, we discuss the 

estimation of the parameters of the GEYD by the 

method of maximum likelihood. In Section 4, the GEYD 

has been fitted to three real-life data sets for 

establishing the importance of the proposed 

distribution, and in section 5, we consider the 

generalized likelihood ratio test procedure for testing 

the significance of the parameters of the GEYD. In 

Section 6, we carried out a simulation study to examine 

the performance of the maximum likelihood estimators 

of the parameters of the distribution.  

Throughout this paper, we assumed m as a positive 

integer and adopted the following shorter notation.  𝛺0−1  =  2𝐹1[1,1, 𝜌 + 2; 𝜆1 + 𝜆2],        (3) 

where 𝐹2 1[. ] is the Gaussian hypergeometric function. 

For more details regarding Gaussian hypergeometric 

distribution, see Mathai and Haubold [18]. Further, we 

need the following series representations in the sequel.  
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2. A GENESIS OF GEYD AND ITS PROPERTIES 

Let 𝑋 be a generalized geometric random variable 

with the following p.g.f, in which 𝜃 > 0, 𝜆1 > 0 and 𝜆2 ≥0.  𝐺(𝑡) =  1𝐹0[1;;𝜃(𝜆1 𝑡+𝜆2  𝑡𝑚)] 1𝐹0[1;;𝜃(𝜆1+𝜆2)]   

Assume that the parameter 𝜃 follows a generalized 

beta distribution with parameters 𝜌, 𝜆1 and 𝜆2, with 

probability density function (p.d.f)  𝑓(𝜃) = 𝛺0  (1−𝜃)𝜌+1 1𝐹0[1;;𝜃(𝜆1+𝜆2)]𝐵(1,𝜌+2) ,  
Where B (.,.) is the beta function and 𝜌 > −2. Then 

the unconditional distribution of 𝑋 is obtained as  
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in the light of the identity (1.104) of Johnson et al. [19].  

Now we present the following definition of the 

proposed class of distribution.  

Definition 2.1 A non-negative integer-valued 

random variable X is said to follow “the generalized 

extended Yule distribution (GEYD)” if its p.g.f is of the 

following form, in which 𝜌 > −2,  𝜆1 > 0 and   𝜆2 ≥ 0.  𝐻(𝑡) =  𝛺0 2𝐹1[1,1; 𝜌 + 2; 𝜆1𝑡 + 𝜆2𝑡𝑚]      (7) 

Clearly, several well-known models are special 

cases of the GEYD. Some of them are listed below. 

1) When 𝜆2 = 0, the p.g.f (7) reduces to the p.g.f of 

the GYD as given in (2) 

2) When 𝜌 = -1, the p.g.f (7) reduces to the p.g.f of 

the generalized version of a geometric distribution 

(GGD) with parameters 𝜆1 and 𝜆2, which further 

reduces to the geometric distribution when 𝜆2=0. 

3) When 𝜌 =0, the p.g.f (7) reduces to the p.g.f of 

the extended zero-inflated logarithmic series 

distribution (EZILSD) studied by Kumar and Riyaz [20] 

which further reduces to the zero-inflated logarithmic 

series distribution of Kumar and Riyaz [21] when 𝜆2=0. 

4) When 𝜆2 = 0 and 𝜆1 approaches to 1, the p.g.f 

(7) reduces to the pgf (1) of the YD (𝜌). 

Now we obtain the p.m.f of the GEYD through the 

following result.  

Proposition 2.2 The p.m.f  ℎ𝑥  of GEYD with p.g.f (7) is the following, for 𝑥 = 0,1,2 ⋯, 𝜌 > −2, 𝜆1 > 0 and 𝜆2 ≥ 0 with 𝜆1 + 𝜆2 < 1.  ℎ𝑥 = 𝛺0  ∑ ∙[ 𝑥𝑚]𝑛=0  [(𝑥−(𝑚−1)𝑛)!]2(𝜌+2)𝑥−(𝑚−1)𝑛  𝜆1𝑥−𝑚𝑛 𝜆2𝑛(𝑥−𝑚𝑛)! 𝑛!,      (8) 

where 𝛺0 is as defined in (3).  

Proof. From (7), we have the following:  𝐻(𝑡) = 𝛺0 2𝐹1[1,1; 𝜌 + 2; 𝜆1 𝑡 + 𝜆2 𝑡𝑚]      (9) 
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On expanding the gauss hypergeometric function in 

(9), we get  
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By applying binomial theorem in (11) to get the 

following.  
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in the light of (4). Now, applying (5) in (12), we obtain 
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Equating the coefficients of 𝑡𝑥 on the right-hand 

side expressions of (10) and (13), we get (8)  

Proposition 2.3 The characteristic function 𝜓(𝑡) of 

the GEYD is the following, for any 𝑡 ∈ 𝑅 and 𝑖 = √−1.  𝜓(𝑡) =  Ω0 2𝐹1[1,1; 𝜌 + 2; 𝜆1 𝑒𝑖𝑡 + 𝜆2 𝑒𝑚𝑖𝑡]      (14) 

Proposition 2.4 The mean and variance of the 

GEYD are the following, in which 𝜆∗ = 𝜆1 + 𝑚𝜆2 𝑀𝑒𝑎𝑛 = 𝜆∗ Ω0(𝜌+2) Ω1        (15) 

and 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜆∗ Ω0𝜌+2 [4 𝜆∗ Ω2𝜌+3 + Ω1 (1 − 𝜆∗ Ω0  Ω1𝜌+2 )].     (16) 

Proof. It follows from the fact that 

Mean= 𝐻(1)(1) 
and 

Variance= 𝐻(2)(1) + 𝐻(1)(1) − [𝐻(1)(1)]2, 

where 𝐻(𝑟)(1) = 𝑑𝑟 𝐻(𝑡)𝑑𝑡𝑟 /𝑡 = 1.  

Remark 2.5 From (15) and (16), it is seen that the 

GEYD is over-dispersed if and only if  4 (𝜌 + 2) Ω2 − (𝜌 + 3) Ω1 Ω0 > 0,  
for all values of the parameters 𝜌, 𝜆1 and 𝜆2 and the 

GEYD is under-dispersed otherwise.  

Proposition 2.6 For  𝑥 ≥ 1, the following is a simple 

recursion formula for probabilities 

 

ℎ𝑥 = ℎ𝑥(1,1; 𝜌 + 2) of the GEYD with p.g.f (7).  Ω1(𝜌 + 2) (𝑥 + 1) ℎ𝑥+1(1,1; 𝜌 + 2) =Ω0[𝜆1 ℎ𝑥(2,2; 𝜌 + 3) + 𝑚 𝜆2 ℎ𝑥−𝑚+1(2,2; 𝜌 + 3)]       (17) 

These recurrence relations are helpful for 

computing probabilities of the GEYD while fitting the 

distribution to the data. 

Proof. From (7), we have  

]2;[1,1; = 2)(1,1;=)( 21120

0=

mx
x

x

ttFthtH  


  

              (18) 

Differentiating the equation (18) with respect to 𝑡, 

we get  
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In (18), by replacing 1, 1 and 𝜌 + 2 with 2, 2 and 𝜌 + 3, respectively, we obtain  
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Substitute (20) in (19) to get  
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Equating the coefficients of 𝑡𝑥 on both sides of (21), 

we get (17). 

Now we derive certain recurrence relations for raw 

moments and factorial moments of the GEYD. Those 

recurrence relations are useful for evaluating the 

moments of the distribution of any order. 

Proposition 2.7 The following is a simple recursion 

formula for raw moments  
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Proof. By definition, the characteristic function of 

the GEYD is given by  
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By using (14) with 1, 1 and 𝜌 + 2 replaced by 2, 2 

and 𝜌 + 3 respectively, we obtain  
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Differentiate (23) with respect to 𝑡 to get  ∑ ∙∞𝑟=0 𝑖 𝜇𝑟+1(1,1; 𝜌 + 2) (𝑖𝑡)𝑟𝑟! = Ω0  𝑖 (𝜆1 𝑒𝑖𝑡+𝑚 𝜆2 𝑒𝑚𝑖𝑡)𝜌+2  ×  2𝐹1[2,2; 𝜌 + 3; 𝜆1 𝑒𝑖𝑡 + 𝜆2 𝑒𝑚𝑖𝑡],      (25) 

which on simplification in the light of (25) gives  
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On expanding the exponential functions in (26) and 

applying (4) to obtain  
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Equating the coefficients of (𝑖𝑡)𝑟 (𝑟!)−1 on both 

sides of (27), we get (22) 

Proposition 2.8 The following is a simple recursion 

formula for factorial moments 𝜇[𝑟] = 𝜇[𝑟](1,1; 𝜌 + 2) of 

the GEYD, for 𝑟 ≥ 0.  
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Proof. The factorial moment generating function 

F(t) of the GEYD with p.g.f (7) is given by  𝐹(𝑡) = 𝐻(1 + 𝑡)        (28) 
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= Ω0 2𝐹1[1,1; 𝜌 + 2; 𝜆1 (𝑡 + 1) + 𝜆2(𝑡 + 1)𝑚].     (30) 

From (28) with 1, 1 and 𝜌 + 2 changed by 2, 2 and 𝜌 + 3 respectively, we have  
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On differentiating (28) with respect to 𝑡, we get  
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 ×  2𝐹1[2,2; 𝜌 + 3; 𝜆1 (𝑡 + 1) + 𝜆2(𝑡 + 1)𝑚],  
Applying binomial theorem and the series 

representation (5) in (31) to obtain  
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By equating the coefficients of 𝑡𝑟 (𝑟!)−1 on above 

equation, we get the results. 

3. ESTIMATION 

In this section, we discuss the estimation of the 

parameters 𝜌, 𝜆1 and 𝜆2 of the GEYD by the method of 

maximum likelihood, and thereafter the generalized 

likelihood ratio test procedure is utilized for testing the 

significance of the parameters 𝜌, 𝜆1 and 𝜆2 of the 

GEYD. 

Let 𝑎(𝑥) be the observed frequency of 𝑥 events 

based on the observations from a sample with 

independent components and let 𝑦 be the highest 

value of the 𝑥 observed. The likelihood function of the 

sample is  𝐿 = ∏ ∙𝑦𝑥=0 [ℎ𝑥]𝑎(𝑥),      (32) 

which implies  𝑙𝑛 𝐿 = ∑ ∙𝑦𝑥=0 𝑎(𝑥) 𝑙𝑛 ℎ𝑥.     (33) 

Let �̂�, �̂�1 and �̂�2 be the MLEs of 𝜌, 𝜆1 and 𝜆2, 

respectively. Now, the MLEs of the parameters are 
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obtained by solving the following likelihood equations 

obtained from (33) on differentiation with respect to 𝜌, 𝜆1 and 𝜆2 respectively and equating to zero. Then 𝜕 𝑙𝑜𝑔 𝐿𝜕𝜌 = 0       (34) 

or equivalently 
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On solving the log-likelihood equations by using 

some mathematical software, say MATHEMATICA, one 

can obtain the maximum likelihood estimators of the 

parameters 𝜌, 𝜆1 and 𝜆2 of the GEYD. 

4. APPLICATIONS 

For numerical illustration, we have considered two 

real-life data applications, of which the first data set is 

from Wagner et al. [22], which contains the frequency 

of direct job changes in a sample of 1962 individuals. 

The second data set is on the number of European red 

mites on each leave based on an experiment with 150 

leaves from apple trees taken from Bliss et al. [23]. We 

have fitted the EYD, the EZILSD, the geometric 

distribution (GD), the YD, and the GEYD to these data 

sets and the results obtained along with the 

corresponding values of the expected frequencies, Chi-

square statistic, degrees of freedom (d.f), Akaike 

information criterion (AIC) and Bayesian information 

criterion (BIC) in respect of each of the models are 

presented in Table 1 and 2, respectively. Based on the 

computed values of the Chi-square statistic and 

information measures, it can be observed that the 

GEYD gives a better fit to both the data sets 

considered here compared to the existing models, the 

EYD, the GD, the EZILSD and the YD. 

5. TESTING OF HYPOTHESIS 

In this section, we present the generalized likelihood 

ratio test (GLRT) procedure for testing the significance 

of the parameters of the GEYD. Here we consider the 

following tests: 

1. Test 1: 𝐻0(1): 𝜆2 = 0 against 𝐻1(1):𝜆2 ≠ 0  

2. Test 2: 𝐻0(2): 𝜌 = 0 against 𝐻1(2): 𝜌 ≠ 0  

3. Test 3: 𝐻0(3): 𝜌 = −1, 𝜆2 = 0 against 𝐻1(3):𝜌 ≠−1, 𝜆2 ≠ 0  

The test statistic is  −2 𝑙𝑛 𝛬 = 2(𝑙𝑛 𝐿 (�̂�; 𝑥) − 𝑙𝑛 𝐿 (�̂�∗; 𝑥)),    (37) 

in which �̂� is the MLE of 𝛬 = (𝜆1, 𝜆2 , 𝜌) with no 

restriction and �̂�∗ is the MLE of 𝛬 under 𝐻0. The test 

statistic −2 𝑙𝑜𝑔 𝛬 is asymptotically distributed as a chi-

square with one degree of freedom in the case of Test 

1 and 2 and two degrees of freedom in the case of Test 

3, respectively. For details of the GLRT, see [24]. We 

have computed the values of 𝑙𝑛 𝐿 (�̂�; 𝑥), 𝑙𝑛 𝐿 (�̂�∗; 𝑥) and 

the test statistic in case of both the data sets are 

inserted in Table 3. 

From Table 3, it can be observed that the calculated 

value of the test statistic is greater than the tabled 

value in the case of both the data sets, and hence one 

can conclude that the parameters of the fitted model 

GEYD are significant in the case of both the data sets 

at 5 level of significance. 
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Table 1: Observed Frequencies and Computed Values of Expected Frequencies of the EYD, the GD, the EZILSD, the 
YD and the GEYD by the Method of Maximum Likelihood for the First Data Set 

* 𝒙 Observed Expected Frequency by MLE  

  EYD GD EZILSD YD 
GEYD  

m=2 

0 1333 1339.72 1273.36 1351.53 1424.47 1328.02 

1 404 397.28 446.35 371.63 312.50 388.14 

2 133 139.45 156.22 136.26 108.43 140.63 

3 43 52.14 54.67 56.21 48.91 48.79 

4 25 20.15 19.13 24.73 25.57 29.41 

5 10 7.95 6.69 11.33 14.78 12.60 

6 4 3.18 3.34 5.34 9.19 6.42 

7 4 1.28 1.82 2.65 6.04 3.86 

8 1 0.52 0.28 1.25 4.14 2.24 

9 2 0.21 0.10 0.62 2.95 1.40 

10 2 0.08 0.03 0.31 2.16 0.59 

11 0 0.03 0.01 0.15 1.62 0.32 

12 1 0.01 0.001 0.07 1.26 0.18 

Total 1962 1962 1962 1962 1962 1962 

d.f  4 5 5 8 4 

Estimates of  𝜌 =-0.95 𝜆 =1.65 𝜆1=0.43 𝜌 =0.06 𝜌 =-0.98 

parameters  𝜆 =0.34  𝜆2=0.10  𝜆1=0.75 

      𝜆2=0.36 𝜒2-value  17.96 28.89 11.51 47.29 3.66 

AIC  3890.12 3915.12 3887.38 3928 3882.32 

BIC  3888.33 3914.23 3885.60 3927.11 3879.65 

 

Table 2: Observed Frequencies and Computed Values of Expected Frequencies of the EYD, the GD, the EZILSD, the 
YD and the GEYD by the method of Maximum Likelihood for the Second Data Set 

* 𝐱 Observed Expected Frequency by MLE  

  EYD GD EZILSD YD 
GEYD  

m=2 

0 70 84 68.6 82.91 90 70.56 

1 38 35.42 37.5 31.46 25.83 37.47 

2 17 15.98 22.8 15.05 13.42 19.70 

3 10 7.38 10.49 8.36 8.23 10.44 

4 9 3.45 5.26 5.15 5.83 6.71 

5 3 1.62 2.54 3.06 2.55 2.87 

6 2 0.76 1.56 1.94 1.80 1.29 

7 1 0.36 0.82 1.25 1.33 0.64 

8 0 0.17 0.43 0.82 1.01 0.32 

Total 150 150 150 150 150 150 

d.f  2 4 3 4 2 

Estimates of  ρ =1.02 λ =0.30 λ1=0.46 ρ =-0.60 ρ =1.77 

parameters  λ = 0.61  λ2=0.41  λ1=0.42 

      λ2=0.34 χ2-value  3.63 3.80 6.70 13.30 1.29 

AIC  456.84 453.68 458.66 476.24 450.08 

BIC  453.64 452.58 454.46 475.14 446.78 
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Table 3: Test Statistic Value and Chi-Square Value for GLRT in Case of Both the Data Sets 

Data sets  𝐥𝐨𝐠 𝐋 (�̂�; 𝐱) 𝐥𝐨𝐠 𝐋 (�̂�∗ ; 𝐱) Test Statistic d f Chi square value 

Data set 1 1*Test 1 -1938.16 -1943.06 5.90 1 3.84 

 1*Test 2 -1938.16 -1941.69 7.06 2 5.99 

 1*Test 3 -1938.16 -1956.96 37.60 2 5.99 

Data set 2 1*Test 1 -222.04 -226.42 8.76 1 3.84 

 1*Test 2 -222.04 -226.33 8.58 2 5.99 

 1*Test 3 -222.04 -225.84 7.60 2 5.99 

 

6. CONCLUSION 

A new class of distribution namely (the GEYD) is 

introduced in this paper by mixing the generalized 

geometric distribution with the generalized beta 

distribution. The GEYD includes several well-known 

classes of distributions such as “extended Yule distri- 

bution of Martinez-Rodriguez et al. [17], generalized 

geometric distribution, geometric distribution, extended 

zero-inflated logarithmic series distribution of Kumar 

and Riyaz [21], zero-inflated logarithmic series 

distribution and Yule distribution”. We studied some of 

the important properties of the GEYD and shown that it 

is suitable for modeling both over-dispersed and under-

dispersed data sets. We attempted/discussed the 

estimation of the parameter by the method of MLE and 

suggested GLRT for testing the significance of the 

parameters of the model. Several characteristic 

properties and inferential aspects of the model are yet 

to study, which we hope to publish shortly via another 

research article. We hope that the GEYD may attract 

wider applications in analyzing count data models.  

ACKNOWLEDGEMENT 

The authors are highly thankful to the Editor-in-

Chief and both anonymous referees for several fruitful 

suggestions, which helped to improve the presentation 

of the article. 

REFERENCES 

[1] Yule GU. A mathematical theory of evolution based on the 
conclusion of Dr. J. C. Wills. Philosophical Society of Royal 
Society of London, Series B, 1920; 213: 21-87. 

[2] Simon HA. On a class of skew distribution. Biometrika, 1955; 
42: 425-440. https://doi.org/10.1093/biomet/42.3-4.425 

[3] Kendall MG. Natural law in social sciences. Journal of Royal 

Statistical Society, Series A, 1961; 124: 1-28.  
https://doi.org/10.2307/2984139 

[4] Haight FA. Some statistical problems in connection with word 
association data. Journal of Mathematical Psychology 1966; 

3(1): 217-233. https://doi.org/10.1016/0022-2496(66)90013-7 

[5] Xekalaki E. A property of Yule distribution and its applica- 

tions. Communication in Statistics: Theory and Methods, 
1983; 12: 140-150.  

 https://doi.org/10.1080/03610928308828523 

[6] Jones JH. and Handcock MS. An assessment of preferential 

attachment as a mechanism for human sexual network 
formation. Proceedings of the Royal Society of London B: 
Biological Sciences, 2003; 270(1520): 1123-1128. 
https://doi.org/10.1098/rspb.2003.2369 

[7] Handcock MS. and Jones JH. Likelihood-based inference for 

stochastic models of sexual network formation. Theoretical 
Population Biology, 2004; 65: 413-422.  
https://doi.org/10.1016/j.tpb.2003.09.006 

[8] Dorogovtsev SN, Mendes JFF. and Samukhin AN. Structure 
of growing networks with preferential linking. Physical 

Review Letters, 2000; 85(21): 4633-4636.  
https://doi.org/10.1103/physrevlett.85.4633 

[9] Levene M, Fenner T, Loizou G. and Wheeldon R. A 
stochastic model for the evolution of the web. Computer 

Networks, 2002; 39(3): 277-287.  
 https://doi.org/10.1016/s1389-1286(02)00209-8 

[10] Xekalaki E. and Panaretos J. On the association of the 
pareto and the yule distribution. Theory of Probability   Its 
Applications, 1989; 33(1): 191-195.  

https://doi.org/10.1137/1133028 

[11] Singh H. and Vasudeva H. A characterization of exponential 
distribution by yule distribution. Journal of Indian Statistical 
Assosiation, 1984; 22: 93-96. 

[12] Prasad A. A new discrete distribution. Sankhya: The Indian 
Journal of Statistics, 1957; 17(4): 353-354. 

[13] Irwin JO. The place of mathematics in medical and biological 

statistic. Journal of Royal Statistical Society, 1968; 126: 1-41. 
https://doi.org/10.2307/2982445 

[14] Mishra A. On a generalized Yule distribution. Assam 
Statistical Review, 2009; 23: 140-150. 

[15] Kumar CS. and Harisankar S. On a modified Yule 
distribution. Statistica, 2018; 78(2): 169-180. 

[16] Kumar CS. and Harisankar S. On some aspects of a general 
class of Yule distribution and its applications. Communication 

in Statistics - Theory and Methods, 2019; 49(12): 2887-2897. 
https://doi.org/10.1080/03610926.2019.1584308 

[17] Martinez-Rodriguez AM, Saez-Castillo AJ. and Conde-
Sanchez A. Modelling using an extended Yule distribution. 

Computational Statistics and Data Analysis, 2011; 55(1): 
863-873. https://doi.org/10.1016/j.csda.2010.07.014 

[18] Mathai AM. and Haubold HJ. Special Functions for Applied 
Statistics. Springer, New York. 2008. 
https://doi.org/10.1007/978-0-387-75894-7 

[19] Johnson NL, Kemp AW. and Kotz S. Univariate Discrete 
Distributions (III). John Wiley Sons, New York. 2005; 
https://doi.org/10.1002/0471715816 

https://doi.org/10.1093/biomet/42.3-4.425
https://doi.org/10.2307/2984139
https://doi.org/10.1016/0022-2496(66)90013-7
https://doi.org/10.1080/03610928308828523
https://doi.org/10.1098/rspb.2003.2369
https://doi.org/10.1016/j.tpb.2003.09.006
https://doi.org/10.1103/physrevlett.85.4633
https://doi.org/10.1016/s1389-1286(02)00209-8
https://doi.org/10.1137/1133028
https://doi.org/10.2307/2982445
https://doi.org/10.1080/03610926.2019.1584308
https://doi.org/10.1016/j.csda.2010.07.014
https://doi.org/10.1007/978-0-387-75894-7
https://doi.org/10.1002/0471715816


56     Journal of Advances in Applied & Computational Mathematics, 2020, Vol. 7 Kumar and Harisankar 

[20] Kumar CS. and Riyaz A. An extended zero-inflated 
logarithmic series distribution and its application. Journal of 
Applied Statistical Science, 2013; 21(1): 31-42.  

[21] Kumar CS. and Riyaz A. On zero-inflated logarithmic series 
distribution and its application. Statistica, 2013; 73(4): 477-
492. https://doi.org/10.1007/s10182-014-0229-1 

[22] Wagner GG, Burkhauser RV. and Behringer F. The English 
language public use file of the German socio-economic 
panel. Journal of Human Resource, 1993; 28: 429-433. 

[23] Bliss CI. and Fisher RA. Fitting the negative binomial 
distribution to biological data and note on the efficient fitting 
of the negative binomial. Biometrics, 1953; 9: 176-200. 

https://doi.org/10.2307/3001850 

[24] Rao CR. Minimum variance and the estimation of several 
parameters. In Mathematical Proceedings of the Cambridge 
Philosophical Society, 1947; 43: 280-283. Cambridge 

University Press.  
 https://doi.org/10.1017/s0305004100023471 

 

 

Received on 25-10-2020 Accepted on 20-11-2020 Published on 24-11-2020 

DOI: https://doi.org/10.15377/2409-5761.2020.07.7 

© 2020 Kumar and Harisankar; Avanti Publishers. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 
 
 
 

https://doi.org/10.1007/s10182-014-0229-1
https://doi.org/10.2307/3001850
https://doi.org/10.1017/s0305004100023471
doi:%20https://doi.org/10.15377/2409-5761.2020.07.7
http://creativecommons.org/licenses/by-nc/3.0/

