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Abstract: The logistic-X (LX) family of distributions based on the logistic random variable was formulated recently by 
Tahir et al. [1]. We study a new special model of this family called the logistic exponentiated-exponential (LEE) 
distribution. Its density function can be symmetric, left-skewed, right-skewed, and reversed-J shaped, and its hazard rate 
can be decreasing and upside-down bathtub shapes. We provide a useful power series for its quantile function and a 

mixture representation for its density function. The parameters of the LEE model are estimated by maximum likelihood. 
Three Ozone data sets are modeled to illustrate the applicability of the new model.  
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1. INTRODUCTION 

The logistic distribution is a popular continuous 

model, and it is a strong competitor to the normal distri- 

bution since it has explicit formulas for the cumulative 

distribution function (cdf) and quantile function (qf) [2]. 

Both models are symmetric and bell-shaped on the 

support R, but the logistic distribution has a heavier tail 

than the normal one. The logistic distribution has 

several applications in reliability and survival analysis, 

and it is useful for modeling growth phenomenons such 

as childhood cancer; respiratory disease prevalence 

due to smoking and age; geological issues; growth of 

human population; hemolytic uremic syndrome data 

analysis; physicochemical phenomenon; pneumocon- 

iosis in coal miners, phycological tissues and study of 

diseases [3]; among others. 

There has always been an interest for the resear- 

chers in defining and developing new distributions and 

generated families of univariate and bivariate distribu- 

tions by introducing additional shape parameters to the 

baseline model. 

Gupta and Kundu [4-12], in series of papers, 

introduced and studied the exponentiated-G family of 

distribution using Lehman’s (1953) Alternative-I. 

Marshall-Olkin [13] proposed new method of adding 

parameter to the existing distribution. MO-Weibull 

(MOW) distribution was further studied [14-19]. MO-

logistic-exponential by Mansoor et al. [20]. Some other 

well-known generators [1, 21], generalized raised 

cosine distribution by Ahsanullah et al. [22], beta-G 
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[23,24], Kumaraswamy-G (Kw-G) by Cordeiro and de 

Castro [25], McDonald-G (Mc-G) [26,27] introduced 

Weibull power series distribution, Nadarajah and Kotz 

[28] developed beta-exponential distribution, Murthy et 

al. [29] gave a comprehensive detail on Weibull 

distribution and its extensions, gamma-G type 1 

[30,31], gamma-G type 2 by Ristic and Balakrishnan 

[32], odd-gamma-G type 3 by Torabi and Montazari 

[33], logistic-G [34,35] introduced extended gamma 

Weibull family, odd exponentiated generalized by 

Cordeiro et al. [36], transformed-transformer (T-X) 

(Weibull-X and gamma-X) by Alzaatreh et al. [37], 

exponentiated T-X by Alzaghal et al. [38], odd Weibull-

G by Bourguignon et al. [39], exponentiated half-logistic 

by Cordeiro et al. [40], T-X{Y}-quantile based approach 

by Aljarrah et al. [41] and T-R{Y} by Alzaatreh et al. 

[42], Poisson -X family by Tahir et al. [43], T-Lomax 

family by Mansoor et al. [44], Poisson Weibull-X by 

Mansoor et al. [45] and Lindley negative-binomial 

family by Mansoor et al. [46]. 

Let )(tr  be the pdf of a random variable ],[ baT   

for  << ba  and let )(xF  be the cdf of a random 

variable X  such that the link function 

],[[0,1]:)( baW   satisfies the two conditions: (i) )(W  

is differentiable and monotonically non-decreasing, and 

(ii) axW )(  as x  and bxW )(  as x . 

A random variable T  has the one-parameter logistic 
distribution with shape parameter 0> , if its cdf and 

probability density function (pdf) (for Rt ) are  

,)e(1e=);(and)e(1=);( 21   ttt
trtR

 
    (1) 

respectively. A random variable having the logistic 

density in (1) is denoted by :T Logistic( ). The 
survival function (sf) and hazard rate function (hrf) are 
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1)e(1=);(  t
tS

  and 1)e(1=);(  t
t

 , 

respectively. 

Numerous extended forms of distributions have 
been extensively used over the past decades for 
providing a better fit to real data in areas such as 
environmental and medical sciences, biological studies, 
demography, economics, actuarial, finance, insurance, 
and engineering. However, in many applied areas, 
several methods for generating new families will 
continue to be explored. 

Let );( ξxG  and );(1=);( ξξ xGxG   be the baseline 

cdf and sf depending on a parameter vector ξ . 

Alzaatreh et al. [37] defined the T-X family by  

 
,)(=)(

)]([

dttrxF
xGW

a          (2) 

where )]([ xGW  satisfies the above conditions. The pdf 

corresponding to (2) becomes  

 
)]}.([{

)]([
=)( xGWr

dx

xGdW
xf

        (3) 

By replacing )]([ xGW  by   );(ll ξxGogog   and )(tr  

in equation (2) by );( tr  given by (1), Tahir et al. [1] 

defined the cdf and pdf of the Logistic-X (LX) family by  
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)];([l1=),;(






 


 ξξ xGogxF

       (4) 

and  

     ,)];([l1);(l
);(

);(
=),;(
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ξ
ξξ xGogxGog

xG

xg
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             (5) 

respectively. Note that equations (4) and (5) can be 
rewritten as  

 
1])([1=)(  

xHxF g  

and  

 
  ,)(1)()(=)(

21)(    xHxHxhxf ggg  

where )(xHg  and )(xhg  are the hazard and 

cumulative hazard functions corresponding to the pdf 

)(xg , respectively. 

The generated family (5) allows us to extend well-

known distributions and at the same time develop more 

realistic statistical models in a great variety of applica- 

tions. The paper is unfolded as follows. In Section 2, 

we propose the logistic exponentiated-exponential 

(“LEE”) distribution. In Section 3, its main structural 

properties are addressed. A useful representation for 

the LEE pdf is given in Section 4. In Section 5, the 

parameters of the LEE distribution are estimated by the 

method of maximum likelihood, and three real Ozone 

data sets are used to show the applicability of the LEE 

distribution. Section 6 offers some concluding remarks.  

2. THE LEE DISTRIBUTION 

Gupta and Kundu [47,48] pioneered and studied the 

two-parameter exponentiated-exponential (EE) distri- 

bution as an extension of the exponential distribution. 

The EE distribution is also known as the generalized 

exponential (GE) distribution in the literature. Since it is 

the most attractive generalization of the exponential 

distribution, the EE model has received increased 

attention, and several authors have studied its pro- 

perties and proposed comparisons with other distri- 

butions. 

A random variable Z  has the EE distribution with 

scale parameter 0>  and shape parameter 0> , if 

its cdf and pdf are given by (for 0>x )  

,)e(1e=)(and)e(1=)( 1    xxx
xgxG

    (6) 

respectively. We denote this distribution by EE(  , ). 

Now, using equation (4), we obtain the cdf of LEE 

distribution as (for 0>x )  

   .)e(11log1=),,;(=)(
1





 

 x
xFxF

   (7) 

The pdf corresponding to (7) is given by  

     1
1

)e(11log
)e(11

e1e
=)(
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   .)e(11log1
2





 

 x

         (8) 

 A random variable having the pdf (8) will be denoted 

by ),,(L EEX : . The survival and hazard rate 

functions of X  are, respectively, )(1=)( xFxS   and 

)()/(=)( xSxfxh  where )(xf  and )(xF  are given in (8) 

and (7). We can write 

 
   ,)e(11log11=)(

1




 

 x
xS

       (9) 
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and the cumulative hazard function (chf) 

   ,)e(11log11log=)(
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respectively.  

2.1. Shapes of the Density and Hazard Rate 
Functions 

The shapes of the density and hazard rate functions 
can be described analytically. The critical points of the 
LEE density are the roots of the equation:  
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where 
 )e(1=)(= x

xww
 . 

The critical points of the LEE hazard rate are 
obtained from  
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Using any numerical software, we can examine the 
last two equations to determine the local maximums 
and minimums, and inflexion points.  

Figures 1 and 2 display some plots of the pdf and 

hrf of X  for some parameter values. Figure 1 indicates 
that the LEE distribution can be right-skewed, left-

skewed, and reversed J shapes. Also when 1  and 

1< , the LEE distribution is right-skewed. Note that 

the skewness increases when 1> . The plots in 

Figure 2 show that the LEE hrf possesses various 
shapes, including decreasing and upside-down bathtub 
shapes. 

3. SOME PROPERTIES 

In this section, we study some general properties for 

the LEE distribution, including quantile function, 

moments, and Shannon entropy. The formulae derived 

throughout the paper can be easily handled in symbolic 

computation software like Maple, Mathematica, and 

Matlab. 

Lemma 3.1 If )(LogisticY :  then 


1
1

e )e(11log=


















Y
X

 

follows the ),,( LEE  distribution. 

 

(a)          (b) 

Figure 1: Plots of the LEE density for some values of  and . 
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Remark 3.1 The qf of X  is obtained by inverting (7) 

as (for (0,1)u )  

}.]e[1{1log=)(=

1

1
1

1 











 

  u

u

uQx
     (10) 

If U  has a uniform distribution in (0,1) , then 

)(= UQX  has the ),,(L EE  distribution. 

Theorem 3.1 The k th moment of X  is given by  
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where (for 1,2,=k  and 0,1,2,=l )  
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Proof. Based on Lemma 3.1,  
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For 1,2,=k  and (0,1)z , the power series holds  
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We can write  
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By using the generalized binomial expansion in the 
last term, we have  
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By expanding the exponential function in power 
series gives  













 













 




m

lk

b
k

l
m

ml

kk
x

 )(

0==

1
e 1)(1)(=})e(11log{

 

.
1)(

e1)(
1

1= 














 


p

m
xppp

p


       (13) 

 

          (a)         (b) 

Figure 2: Plots of the LEE hazard rate for some values of  and . 
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Equation (11) follows by substituting (13) in 
equation (12) and noting that  
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Theorem 3.2 The k th incomplete moment of X  

can be expressed (for 0>y ) as  
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Proof. The k th incomplete moment of X  follows 
from the following result. This result can be found in 
[49].  
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where 12 F  is the hypergeometric function given by  
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The main application of the first incomplete moment 
refers to the Bonferroni and Lorenz curves. These 
curves are very useful in economics, reliability, 
demography, insurance, and medicine. For a given 

probability  , they are defined by ))/((=)( 11
'

qmB   

and '
qmL 11 )/(=)(  , respectively, where )(1 qm  is 

obtained from (14) with 1=k , and )(= Qq  is 

determined from (20) given in Section 4.1. 

The amount of scattering in a population is 
measured to some extent by the totality of deviations 
from the mean and median defined by 

dxxfx
' )(||= 1

0
1  


 and dxxfMxx )(||=)(

0
2 


 , 

respectively, where )(=1 XE
'  is the mean and 

(0.5)= QM  is the median. These measures can be 

expressed as )(2)(2= 11111
'''

mF    and 

)(2= 112 Mm
'  , where )( 1

'
F   comes from (7). 

Further applications of the first incomplete moment 
are related to the mean residual life and mean waiting 

time given by ttStmt  )()]/([1=)( 1  and 

)]()/([=)( 1 tFtmtt  , respectively, where )(tF  and 

)(1=)( tFtS   are obtained from (7). 

Theorem 3.3 The Shannon’s entropy of X  is given 
by  
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Proof. Based on Tahir et al. [1], the Shannon 
entropy of the LX family can be expressed as  

  2,l,11e1l= 11e1 
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where :T  Logistic )( . 

First, we obtain 
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)(xg  and )(xG  are the pdf and cdf of the EE 

distribution. Then, we have  
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We use the well-known power series  
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Based on the power series and generalized 
binomial expansion, we have  
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From the last two equations, we can write  

)(log=e1l e1 




























   T

GgogE

 















 



 T
mm

mk
m

k
k

e1

0=1=

e
/

1)( E


 

  .e1 e1

1=

1 





 



 T
k

k

k E
       (19) 

Then, equation (15) follows by substituting (19) in 
(17) and noting that  
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4. USEFUL REPRESENTATIONS 

4.1. Quantile Power Series 

Let )(1= 1
uuz  . The qf of X  follows by inverting 

(7) and using (18)  
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By expanding the binomial and then using the 
power series for the exponential function, we have  
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The following power series holds for any real non-

integer power and (0,1)u   
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Equation (21) is the main result of this section since 
it allows to obtain some mathematical quantities for the 

LEE distribution. Let )(W  be any integrable function in 

the positive real line. We can write  
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So, several mathematical quantities of X  can be 

derived with integrals over (0,1) . 

4.2. Mixture representation 

From (7) we have  
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Using the last equation, we can write  
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Combining (23) and (24), equation (22) becomes  
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where kkk qpv =  for 0,1,=k  

The quotient of the two power series in the last 
equation reduces to  
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where 000 /= vqc  and the coefficients kc ’s (for 1k ) 

are determined from the recurrence equation  
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By differentiating (25), the pdf of X  can be rewritten 
as a mixture of EE density functions  
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where 11)(
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  kxx

k kx  (for 

0k ) is the EE pdf with the common scale parameter 

 , and the power parameter 1)( k . Equation (26) is 

the main result of this section. The mathematical 
properties of the LEE model can then be derived from 
those of the EE density function, which have been 
explored exhaustively. See, for example [47,48]. 

A simple application of (26) can be given to the 

moment generating function (mgf) of X , say )(tM . It 

can be immediately derived from (26) and the well-
known result for the mgf of the EE distribution. We 

obtain (for <t )  
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5. ESTIMATION AND APPLICATIONS 

Here, we consider the estimation of the unknown 
parameters of the LEE distribution by the maximum 
likelihood method. The maximum likelihood estimates 
(MLEs) enjoy desirable properties that can be used 
when constructing confidence intervals and deliver 
simple approximations that work well in finite samples. 
The resulting approximation for the MLEs in distribution 
theory is easily handled either analytically or 

numerically. Let nxx ,,1   be a sample of size n  from 

the LEE distribution given by (8). The log-likelihood 

function for the vector of parameters ),,(= Θ  can 

be expressed as  
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Maximization of   can be performed by using well-

established routines like NLM or OPTIMIZE in the R 
statistical package, the NLMIXED procedure in SAS or 
the MaxBFGS in the Ox program.  

The components of the score vector )(ΘU  are  
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Setting U , U  and U  equal to zero and solving 

these equations simultaneously yields the MLEs 

̂ = (̂ , ̂ , ̂ ) ú. 

5.1. Applications to Real-Life Data 

In this section, we use three real data sets and fit 

the LEE model. All the calculations were performed by 

R Development Core Team [50] software.  

Data Set 1: 

The first Ozone data set is taken from Nadarajah 

[51]. This data represents measurements of daily 

ozone concentration (ppb) on 111 days from May to 

September 1973 in New York. The data are: 41, 36, 12, 

18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 

11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37, 20, 

12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 

48, 35, 61, 79, 63, 16, 80, 108, 20, 52, 82, 50, 64, 59, 

39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 

23, 31, 44, 21, 9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 

73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 

13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20.  

Data Set 2: 

The second data set represents the average daily 

ozone values over 1987 summer at 20 Chicago monit- 

oring stations on the website: www.image.ucar.edu/ 

GSP/Software/Fields/Help/ozone.html. The data are: 

59, 58, 90, 80, 50, 47, 81, 56, 55, 72, 62, 100, 97, 91, 

80, 81, 76, 75, 85, 94, 80, 82, 74, 68, 60, 85, 34, 66, 

65, 73, 63, 62, 36, 54, 42, 52, 64, 65, 60, 56, 64.  

Data Set 3: 

This data set records the level of atmospheric 

ozone concentration from eight daily meteorological 

measurements made in the Los Angeles basin in 1976. 

Although measurements were made every day that 

year, some observations were missing; here, we have 

the 330 complete cases. These data can be accessed 

using the following link: http://www-stat.stanford.edu/ 

tibs/ElemStatLearn/datasets. The response, referred to 

as ozone, is actually the log of the daily maximum of 

the hourly-average ozone concentrations in Upland, 

California. 

We fit the LEE to these data sets. We present the 

MLEs, their Standard Errors (SEs) in parentheses, the 

Akaike information criterion (AIC), the Kolmogrov-

Smirnov (K-S) statistics and associated P-values in 

Table 1. The K-S statistic and its P-value given in Table 

1 indicate that LEE model provides an adequate fit. For 

a visual comparison, we provide the empirical and fitted 

pdf and cdf of the LLE model in Figure 3. Clearly, the 

LEE model provides a closer fit to the data. 

6. CONCLUDING REMARKS 

In this paper, we studied the logistic-exponentiated 

exponential (LEE) distribution which is a member of the 

Logistic-X (LX) family introduced by Tahir et al. [1]. We 

studied some mathematical properties of the LEE 

Table 1: MLEs, their SEs (in Parentheses) and Goodness-of-Fit Measures for Three Data Sets 

Data Set       AIC K-S P-Value 

data 1  0.4472(0.2014) 3.3156(1.0519) 0.0139(0.0081) 1093.00 0.0703 0.614 

data 2  1.5668(0.0933) 5.6540(1.9976) 0.0204(0.0090) 352.44 0.0942 0.860 

data 3  0.3204(0.1205) 4.7111(1.3680) 0.02861(0.0177) 2225.91 0.0811 0.225 
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model, including explicit expressions for the quantile 

function, ordinary and incomplete moments, mean devi- 

ations, Shannon entropy, and generating function. The 

density function of the proposed distribution can be ex- 

pressed in terms of exponentiated exponential densities. 

The maximum likelihood method is employed for esti- 

mating the model parameters. We fit the LEE distribution 

to three Ozone data sets to demonstrate its flexibility. 

 

   (a) Estimated pdfs for data set 1    (b) Estimated cdfs for data set 1  

 

   (a) Estimated pdfs for data set 2    (b) Estimated cdfs for data set 2  

 

   (a) Estimated pdfs for data set 3    (b) Estimated cdfs for data set 3  

Figure 3: Plots of the estimated pdfs and cdfs of the LEE model for data sets 1, 2 and 3. 
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