Abstract
The early publications in the theory of fuzzy sets by Zadeh and Goguen show the intention to generalize the classical notion of a set and to accommodate the fuzziness that is contained in human language, namely human judgement, evaluation, and decisions. This article aims to show several approaches that allow effective treatment of uncertain, inaccurate, or unknown knowledge. On the one hand, a brief review of the theoretical background for these different paradigms is provided. On the other hand, the different extensions of soft sets are justified in the application to decision making. We pay special attention to applications in the medical sciences and provide a study case for biological signaling pathways.
References
Abbas, S., Ibedou, I.: Fuzzy soft uniform spaces. Soft Computing pp. 1-11 (2016). https://doi.org/10.1007/s00500-016-2327-3
Akram, M., Adeel, A., Alcantud, J.C.R.: Hesitant fuzzy -soft sets: A new model with applications in decision-making. Journal of Intelligent & Fuzzy Systems 36(6), 6113-6127 (2019). https://doi.org/10.3233/JIFS-181972
Akram, M., Kahraman, C., Zahid, K.: Group decision-making based on complex spherical fuzzy VIKOR approach. Knowledge-Based Systems 216, 106793 (2021). https://doi.org/10.1016/j.knosys.2021.106793
Akram, M., Peng, X., Sattar, A.: Multi-criteria decision-making model using complex Pythagorean fuzzy Yager aggregation operators. Arabian Journal for Science and Engineering pp. 1-27 (2020). https://doi.org/10.1007/s13369-020-04864-1
Akram, M., Peng, X., Sattar, A.: A new decision-making model using complex intuitionistic fuzzy Hamacher aggregation operators. Soft Computing pp. 1-28 (2021). https://doi.org/10.1007/s00500-021-05658-9
Akram, M., Sarwar, M., Dudek, W.A.: Special types of bipolar fuzzy graphs. In: Graphs for the Analysis of Bipolar Fuzzy Information, pp. 127- 159. Springer (2021). https://doi.org/10.1007/978-981-15-8756-6_3
Akram, M., Shabir, M., Al-Kenani, A.N., Alcantud, J.C.R.: Hybrid decision-making frameworks under complex spherical fuzzy-soft sets. Journal of Mathematics 2021, Article ID 5563215 (2021).
Akram, M., Shahzadi, S.: Novel intuitionistic fuzzy soft multiple-attribute decision-making methods. Neural Computing and Applications pp. 1- 13 (2016). https://doi.org/10.1007/s00521-016-2543-x
Aktas, H., Çagman, N.: Soft sets and soft groups. Information Sciences 177, 2726-35 (2007). https://doi.org/10.1016/j.ins.2006.12.008
Alcantud, J.C.R.: Fuzzy soft set based decision making: A novel alternative approach. In: IFSA-EUSFLAT Conference 2015, pp. 106-111. Atlantic Press (2015). https://doi.org/10.2991/ifsa-eusflat-15.2015.18
Alcantud, J.C.R.: A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set. Information Fusion 29, 142-148 (2016). https://doi.org/10.1016/j.inffus.2015.08.007
Alcantud, J.C.R.: Some formal relationships among soft sets, fuzzy sets, and their extensions. International Journal of Approximate Reasoning 68, 45-53 (2016). https://doi.org/10.1016/j.ijar.2015.10.004
Alcantud, J.C.R., de Andrés Calle, R.: A segment-based approach to the analysis of project evaluation problems by hesitant fuzzy sets. International Journal of Computational Intelligence Systems 9(2), 325-339 (2016). https://doi.org/10.1080/18756891.2016.1161344
Alcantud, J.C.R., Feng, F., Yager, R.R.: An -soft set approach to rough sets. IEEE Transactions on Fuzzy Systems 28(11), 2996-3007 (2019). https://doi.org/10.1109/TFUZZ.2019.2946526
Alcantud, J.C.R., Giarlotta, A.: Necessary and possible hesitant fuzzy sets: A novel model for group decision making. Information Fusion 46, 63-76 (2019). https://doi.org/10.1016/j.inffus.2018.05.005
Alcantud, J.C.R., Khameneh, A.Z., Kilicman, A.: Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information. Information Sciences 514, 106-117 (2020). https://doi.org/10.1016/j.ins.2019.12.008
Alcantud, J.C.R., Santos-García, G.: Incomplete soft sets: new solutions for decision making problems. In: Bucciarelli, E., Silvestri, M., Rodríguez González, S. (eds.) Decision Economics, In Commemoration of the Birth Centennial of Herbert A. Simon 1916-2016 (Nobel Prize in Economics 1978): Distributed Computing and Artificial Intelligence, 13th International Conference, pp. 9-17. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-40111-9_2
Alcantud, J.C.R., Santos-García, G.: A new criterion for soft set based decision making problems under incomplete information. International Journal of Computational Intelligence Systems 10(1), 394-404 (2017). https://doi.org/10.2991/ijcis.2017.10.1.27
Alcantud, J.C.R., Santos-García, G., Hernández-Galilea, E.: Glaucoma diagnosis: A soft set based decision making procedure. In: Conference of the Spanish Association for Artificial Intelligence. pp. 49-60. Springer (2015). https://doi.org/10.1007/978-3-319-24598-0_5
Alcantud, J.C.R., Santos-García, G., Peng, X., Zhan, J.: Dual extended hesitant fuzzy sets. Symmetry 11(5), 714 (2019). https://doi.org/10.3390/sym11050714
Alcantud, J.C.R., Torra, V.: Decomposition theorems and extension principles for hesitant fuzzy sets. Information Fusion 41, 48-56 (2018). https://doi.org/10.1016/j.inffus.2017.08.005
Ali, M., Mahmood, T., Rehman, M., Aslam, M.: On lattice ordered soft sets. Applied Soft Computing 36, 499-505 (2015). https://doi.org/10.1016/j.asoc.2015.05.052
Ali, M.I., Feng, F., Liu, X., Min, W.K., Shabir, M.: On some new operations in soft set theory. Computers & Mathematics with Applications 57(9), 1547-1553 (2009). https://doi.org/10.1016/j.camwa.2008.11.009
Alkhazaleh, S., Salleh, A.R., Hassan, N.: Soft multisets theory. Applied Mathematical Sciences 5, 3561-3573 (2011). https://doi.org/10.1155/2011/479756
Babitha, K., John, S.J.: Hesitant fuzzy soft sets. Journal of New Results in Science 2(3), 98-107 (2013).
Basu, K., Deb, R., Pattanaik, P.K.: Soft sets: An ordinal formulation of vagueness with some applications to the theory of choice. Fuzzy Sets and Systems 45(1), 45-58 (1992). https://doi.org/10.1016/0165-0114(92)90090-Q
Basu, T.M., Mahapatra, N.K., Mondal, S.K.: A balanced solution of a fuzzy soft set based decision making problem in medical science. Applied Soft Computing 12(10), 3260-3275 (2012). https://doi.org/10.1016/j.asoc.2012.05.006
Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., Torra, V.: Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms. Information Sciences 255, 82-99 (2014). https://doi.org/10.1016/j.ins.2013.08.024
Belohlavek, R.: Fuzzy relational systems: foundations and principles, vol. 20. Springer Science & Business Media (2012).
Çelik, Y., Yamak, S.: Fuzzy soft set theory applied to medical diagnosis using fuzzy arithmetic operations. Journal of Inequalities and Applications 2013(1), 82 (2013). https://doi.org/10.1186/1029-242X-2013-82
Chetia, B., Das, P.K.: An application of interval valued fuzzy soft sets in medical diagnosis. International Journal of Contemporary Mathematical Sciences 38(5), 1887-94 (2010).
Das, S., Kar, S.: Group decision making in medical system: An intuitionistic fuzzy soft set approach. Applied Soft Computing 24, 196-211 (2014). https://doi.org/10.1016/j.asoc.2014.06.050
Deli, I., Broumi, S.: Neutrosophic soft matrices and NSM-decision making. Journal of Intelligent & Fuzzy Systems 28(5), 2233-2241 (2015). https://doi.org/10.3233/IFS-141505
Deli, I., Çagman, N.: Intuitionistic fuzzy parameterized soft set theory and its decision making. Applied Soft Computing 28, 109-113 (2015). https://doi.org/10.1016/j.asoc.2014.11.053
Deli, I., Eraslan, S., Çagman, N.: ivnpiv-neutrosophic soft sets and their decision making based on similarity measure. Neural Computing and Applications pp. 1-17 (2016). https://doi.org/10.1007/s00521-016-2428-z
Deng, T., Wang, X.: An object-parameter approach to predicting unknown data in incomplete fuzzy soft sets. Applied Mathematical Modelling 37(6), 4139-4146 (2013). https://doi.org/10.1016/j.apm.2012.09.010
Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.L.: Pathway Logic: Executable models of biological networks. In: Gadducci, F., Montanari, U. (eds.) Proceedings of the Fourth International Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, September 19-21, 2002. Electronic Notes in Theoretical Computer Science, vol. 71, pp. 144-161. Elsevier (2004). https://doi.org/10.1016/S1571-0661(05)82533-2
Fatimah, F., Alcantud, J.C.R.: The multi-fuzzy -soft set and its applications to decision-making. Neural Computing and Applications pp. 1-10 (2021). https://doi.org/10.1007/s00521-020-05647-3
Fatimah, F., Rosadi, D., Hakim, R.F., Alcantud, J.C.R.: Probabilistic soft sets and dual probabilistic soft sets in decision-making. Neural Computing and Applications (2017). https://doi.org/10.1007/s00521-017-3011-y
Fatimah, F., Rosadi, D., Hakim, R.F., Alcantud, J.C.R.: -soft sets and their decision making algorithms. Soft Computing 22(12), 3829-3842 (2018). https://doi.org/10.1007/s00500-017-2838-6
Feng, F., Jun, Y.B., Liu, X., Li, L.: An adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics 234, 10-20 (2010). https://doi.org/10.1016/j.cam.2009.11.055
Feng, F., Li, Y.: Soft subsets and soft product operations. Information Sciences 232, 44-57 (2013). https://doi.org/10.1016/j.ins.2013.01.001
Feng, F., Jun, Y.B., Liu, X., Li, L.: An adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics 234(1), 10-20 (2010). https://doi.org/10.1016/j.cam.2009.11.055
Feng, F., Liu, X., Leoreanu-Fotea, V., Jun, Y.B.: Soft sets and soft rough sets. Information Sciences 181(6), 1125-1137 (2011). https://doi.org/10.1016/j.ins.2010.11.004
Feng, F., Zheng, Y., Sun, B., Akram, M.: Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making. Granular Computing pp. 1-17 (2021). https://doi.org/10.1007/s41066-021-00253-7
Fu, J., Ye, J., Cui, W.: The dice measure of cubic hesitant fuzzy sets and its initial evaluation method of benign prostatic hyperplasia symptoms. Scientific reports 9(1), 1-8 (2019). https://doi.org/10.1038/s41598-018-37228-9
Han, B.H., Li, Y., Liu, J., Geng, S., Li, H.: Elicitation criterions for restricted intersection of two incomplete soft sets. Knowledge-Based Systems 59, 121-131 (2014). https://doi.org/10.1016/j.knosys.2014.01.015
Jiang, Y., Tang, Y., Chen, Q., Liu, H., Tang, J.: Interval-valued intuitionistic fuzzy soft sets and their properties. Computers and Mathematics with Applications 60, 906-918 (2010). https://doi.org/10.1016/j.camwa.2010.05.036
Jiang, Y., Tang, Y., Chen, Q., Liu, H., Tang, J.: Extending fuzzy soft sets with fuzzy description logics. Knowledge-Based Systems 24(7), 1096- 1107 (2011). https://doi.org/10.1016/j.knosys.2011.05.003
Jiang, Y., Tang, Y., Chen, Q., Wang, J., Tang, S.: Extending soft sets with description logics. Computers & Mathematics with Applications 59(6), 2087-2096 (2010). https://doi.org/10.1016/j.camwa.2009.12.014
Jurio, A., Bustince, H., Torra, V.: Managing the doubt in fuzzy clustering by means of interval-valued fuzzy sets. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1-6. IEEE (2019). https://doi.org/10.1109/FUZZ-IEEE.2019.8858837
Karaaslan, F., Çagman, N.: Fuzzy soft lattice theory. ARPN Journal of Science and Technology pp. 1-5 (2013).
Kirisci, M.: -soft sets and medical decision-making application. International Journal of Computer Mathematics pp. 1-15 (2020).
Knapp, M., Briesemeister, L., Eker, S., Lincoln, P., Poggio, A., Talcott, C.L., Laderoute, K.: Pathway Logic helping biologists understand and organize pathway information. In: Markstein, P., Xu, Y. (eds.) Proceedings of the Fourth International IEEE Computer Society Computational Systems Bioinformatics Conference Workshops & Poster Abstracts (CSB 2005 Workshops), Stanford, California, August 8-11, 2005. pp. 155- 156. IEEE Computer Society (2005).
Lashari, S.A., Ibrahim, R.: A framework for medical images classification using soft set. Procedia Technology 11, 548-556 (2013). https://doi.org/10.1016/j.protcy.2013.12.227
Li, S.M., Chan, F.T., Tsang, Y.P., Lam, H.Y.: New product idea selection in the fuzzy front end of innovation: A fuzzy best-worst method and group decision-making process. Mathematics 9(4), 337 (2021). https://doi.org/10.3390/math9040337
Li, Z., Xie, N., Gao, N.: Rough approximations based on soft binary relations and knowledge bases. Soft Computing 21(4), 839-852 (2017). https://doi.org/10.1007/s00500-016-2077-2
Liu, Y., Qin, K., Rao, C., Mahamadu, M.A.: Object-parameter approaches to predicting unknown data in an incomplete fuzzy soft set. International Journal of Applied Mathematics and Computer Science 27, 157-167 (2017). https://doi.org/10.1515/amcs-2017-0011
Ma, X., Liu, Q., Zhan, J.: A survey of decision making methods based on certain hybrid soft set models. Artificial Intelligence Review 46, 1-4 (2016). https://doi.org/10.1007/s10462-016-9490-x
Maji, P., Biswas, R., Roy, A.: Fuzzy soft sets. Journal of Fuzzy Mathematics 9, 589-602 (2001).
Maji, P., Biswas, R., Roy, A.: Intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics 9, 677-692 (2001).
Maji, P., Biswas, R., Roy, A.: An application of soft sets in a decision making problem. Computers and Mathematics with Applications 44, 1077- 83 (2002). https://doi.org/10.1016/S0898-1221(02)00216-X
Maji, P., Biswas, R., Roy, A.: Soft set theory. Computers and Mathematics with Applications 45, 555-62 (2003). https://doi.org/10.1016/S0898-1221(03)00016-6
Maji, P., Roy, A., Biswas, R.: An application of soft sets in a decision making problem. Computers and Mathematics with Applications 44, 1077- 1083 (2002). https://doi.org/10.1016/S0898-1221(02)00216-X
Manna, S., Basu, T.M., Mondal, S.K.: A soft set based vikor approach for some decision-making problems under complex neutrosophic environment. Engineering Applications of Artificial Intelligence 89, 103432 (2020). https://doi.org/10.1016/j.engappai.2019.103432
Mishra, A.R., Rani, P., Krishankumar, R., Ravichandran, K., Kar, S.: An extended fuzzy decision-making framework using hesitant fuzzy sets for the drug selection to treat the mild symptoms of coronavirus disease 2019 (COVID-19). Applied Soft Computing 103, 107155 (2021). https://doi.org/10.1016/j.asoc.2021.107155
Mo ko , J., H nar, D.: On unification of methods in theories of fuzzy sets, hesitant fuzzy set, fuzzy soft sets and intuitionistic fuzzy sets. Mathematics 9(4), 447 (2021).
Molodtsov, D.: Soft set theory-first results. Computers and Mathematics with Applications 37, 19-31 (1999). https://doi.org/10.1016/S0898- 1221(99)00056-5
Muthukumar, P., Krishnan, G.: A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Applied Soft Computing 41, 148-156 (2016). https://doi.org/10.1016/j.asoc.2015.12.002
Naz, S., Akram, M., Alsulami, S., Ziaa, F.: Decision-making analysis under interval-valued q-rung orthopair dual hesitant fuzzy environment. International Journal of Computational Intelligence Systems 14, 332-357 (2021). https://doi.org/10.2991/ijcis.d.201204.001
Nguyen, H.T., Wu, B.: Fundamentals of statistics with fuzzy data, vol. 198. Springer (2006).
Pawlak, Z.: Hard and soft sets. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings of the International Workshop on Rough Sets and Knowledge Discovery (RSKD'93), Banff, Alberta, Canada, 12-15 October 1993. pp. 130-135. Springer, London (1994). https://doi.org/10.1007/978-1-4471-3238-7_15
Pawlak, Z.: Why rough sets? In: Proceedings of IEEE 5th International Fuzzy Systems. vol. 2, pp. 738-743. IEEE (1996).
Pawlak, Z., Slowinski, K., Slowinski, R.: Rough classification of patients after highly selective vagotomy for duodenal ulcer. International Journal of Man-Machine Studies 24(5), 413-33 (1986). https://doi.org/10.1016/S0020-7373(86)80001-3
Peng, X., Yang, Y.: Approaches to interval-valued intuitionistic hesitant fuzzy soft sets based decision making. Annals of Fuzzy Mathematics and Informatics 10(4), 657-680 (2015).
Peng, X., Yang, Y.: Interval-valued hesitant fuzzy soft sets and their application in decision making. Fundamenta Informaticae 141(1), 71-93 (2015). https://doi.org/10.3233/FI-2015-1264
Qin, H., Ma, X., Herawan, T., Zain, J.: Data filling approach of soft sets under incomplete information. In: Nguyen, N., Kim, C.G., Janiak, A. (eds.) Intelligent Information and Database Systems, LNCS, vol. 6592, pp. 302-11. Springer (2011). https://doi.org/10.1007/978-3-642- 20042-7_31
Riaz, M., Hashmi, M.R.: Linear diophantine fuzzy set and its applications towards multi-attribute decision-making problems. Journal of Intelligent & Fuzzy Systems 37(4), 5417-5439 (2019). https://doi.org/10.3233/JIFS-190550
Riaz, M., Naeem, K., Chinram, R., Iampan, A.: Pythagorean-polar fuzzy weighted aggregation operators and algorithm for the investment strategic decision making. Journal of Mathematics 2021 (2021). https://doi.org/10.1155/2021/6644994
Riesco, A., Santos-Buitrago, B., De Las Rivas, J., Knapp, M., Santos-García, G., Talcott, C.L.: Epidermal growth factor signaling towards proliferation: Modeling and logic inference using forward and backward search. BioMed Research International 2017, 11 (2017). https://doi.org/10.1155/2017/1809513
Rodríguez, R.M., Martnez, L., Torra, V., Xu, Z., Herrera, F.: Hesitant fuzzy sets: State of the art and future directions. International Journal of Intelligent Systems 29(6), 495-524 (2014). https://doi.org/10.1002/int.21654
Sanchez, E.: Inverses of fuzzy relations. application to possibility distributions and medical diagnosis. Fuzzy Sets and Systems 2(1), 75-86 (1979). https://doi.org/10.1016/0165-0114(79)90017-4
Santos-Buitrago, B., Galilea, E.H.: Signaling transduction networks in choroidal melanoma: A symbolic model approach. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Zaki, N., Castellanos-Garzón, J.A. (eds.) Practical Applications of Computational Biology and Bioinformatics, 13th International Conference, PABCC 2019, Avila, Spain, 26-28 June 2019. Advances in Intelligent Systems and Computing, vol. 1005, pp. 96- 104. Springer (2019)
Santos-Buitrago, B., Riesco, A., Knapp, M., Alcantud, J.C.R., Santos-García, G., Talcott, C.: Soft set theory for decision making in computational biology under incomplete information. IEEE Access 7, 18183-18193 (2019). https://doi.org/10.1109/ACCESS.2019.2896947
Santos-Buitrago, B., Riesco, A., Knapp, M., Santos-García, G., Talcott, C.L.: Reverse inference in symbolic systems biology. In: FdezRiverola, F., Mohamad, M.S., Rocha, M.P., Paz, J.F.D., Pinto, T. (eds.) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics, PACBB 2017, Porto, Portugal, 21-23 June, 2017. Advances in Intelligent Systems and Computing, vol. 616, pp. 101-109. Springer (2017). https://doi.org/10.1007/978-3-319-60816-7_13
Santos-Buitrago, B., Santos-García, G., Hernández-Galilea, E.: Artificial intelligence for modeling uveal melanoma. Artificial Intelligence in Cancer 1(4), 51-65 (2020). https://doi.org/10.35713/aic.v1.i4.51
Santos-García, G., De Las Rivas, J., Talcott, C.L.: A logic computational framework to query dynamics on complex biological pathways. In: Saez-Rodriguez, J., Rocha, M.P., Fdez-Riverola, F., De Paz Santana, J.F. (eds.) 8th International Conference on Practical Applications of Computational Biology & Bioinformatics, PACBB 2014, 4-6 June, 2014, Salamanca, Spain. Advances in Intelligent Systems and Computing, vol. 294, pp. 207-214. Springer (2014)
Santos-García, G., Talcott, C.L., De Las Rivas, J.: Analysis of cellular proliferation and survival signaling by using two ligand/receptor systems modeled by Pathway Logic. In: Abate, A., Safránek, D. (eds.) Hybrid Systems Biology - Fourth International Workshop, HSB 2015, Madrid, Spain, September 4-5, 2015. Revised Selected Papers. Lecture Notes in Computer Science, vol. 9271, pp. 226-245. Springer (2015)
Sezgn, A., Atagün, A.O.: On operations of soft sets. Computers & Mathematics with Applications 61(5), 1457-1467 (2011). https://doi.org/10.1016/j.camwa.2011.01.018
Slowinski, K.: Rough classification of HSV patients. In: Slowinski, R. (ed.) Intelligent Decision Support, Theo Deci L, vol. 11, pp. 77-93. Springer (1992). https://doi.org/10.1007/978-94-015-7975-9_6
Stefanowski, J., Slowinski, K.: Rough set theory and rule induction techniques for discovery of attribute dependencies in medical information systems. In: Komorowski, J., Zytkow, J. (eds.) Principles of Data Mining and Knowledge Discovery, LNCS, vol. 1263, pp. 36-46. Springer (1997). https://doi.org/10.1007/3-540-63223-9_104
Torra, V.: Hesitant fuzzy sets. International Journal of Intelligent Systems 25(6), 529-539 (2010). https://doi.org/10.1002/int.20418
Torra, V.: Modeling Decisions for Artificial Intelligence: 17th International Conference, MDAI 2020, Sant Cugat, Spain, September 2-4, 2020, Proceedings. Springer Nature (2020). https://doi.org/10.1007/978-3-030-57524-3
Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: 2009 IEEE International Conference on Fuzzy Systems. pp. 1378-1382. IEEE (2009). https://doi.org/10.1109/FUZZY.2009.5276884
Wang, C., Qu, A.j.: The applications of vague soft sets and generalized vague soft sets. Acta Mathematicae Applicatae Sinica, English Series 31(4), 977-990 (2015). https://doi.org/10.1007/s10255-015-0517-x
Wang, F., Li, X., Chen, X.: Hesitant fuzzy soft set and its applications in multicriteria decision making. Journal of Applied Mathematics 2014 (2014). https://doi.org/10.1155/2014/643785
Xia, M., Xu, Z.: Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning 52, 395-407 (2011). https://doi.org/10.1016/j.ijar.2010.09.002
Xu, W., Ma, J., Wang, S., Hao, G.: Vague soft sets and their properties. Computers and Mathematics with Applications 59, 787-794 (2010). https://doi.org/10.1016/j.camwa.2009.10.015
Xu, Z.: Hesitant fuzzy sets theory, vol. 314. Springer (2014). https://doi.org/10.1007/978-3-319-04711-9
Xu, Z., Zhang, S.: An overview on the applications of the hesitant fuzzy sets in group decision-making: Theory, support and methods. Frontiers of Engineering Management pp. 1-20 (2019)
Yager, R.R., Zadeh, L.A.: An introduction to fuzzy logic applications in intelligent systems, vol. 165. Springer Science & Business Media (2012)
Yang, X., Lin, T.Y., Yang, J., Li, Y., Yu, D.: Combination of interval-valued fuzzy set and soft set. Computers & Mathematics with Applications 58(3), 521-527 (2009). https://doi.org/10.1016/j.camwa.2009.04.019
Yao, Y.: Relational interpretations of neighbourhood operators and rough set approximation operators. Information Sciences 111, 239-59 (1998). https://doi.org/10.1016/S0020-0255(98)10006-3
Yuksel, S., Dizman, T., Yildizdan, G., Sert, U.: Application of soft sets to diagnose the prostate cancer risk. Journal of Inequalities and Applications 2013(1), 229 (2013). https://doi.org/10.1186/1029-242X-2013-229
Zadeh, L.: Fuzzy sets. Information and Control 8, 338-53 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Zhan, J., Ali, M.I., Mehmood, N.: On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods. Applied Soft Computing 56, 446-457 (2017). https://doi.org/10.1016/j.asoc.2017.03.038
Zhan, J., Zhu, K.: Reviews on decision making methods based on (fuzzy) soft sets and rough soft sets. Journal of Intelligent & Fuzzy Systems 29, 1169-1176 (2015). https://doi.org/10.3233/IFS-151732
Zhang, X.: On interval soft sets with applications. International Journal of Computational Intelligence Systems 7(1), 186-196 (2014). https://doi.org/10.1080/18756891.2013.862354
Zhang, Z., Wang, C., Tian, D., Li, K.: A novel approach to interval-valued intuitionistic fuzzy soft set based decision making. Applied Mathematical Modelling 38(4), 1255-1270 (2014). https://doi.org/10.1016/j.apm.2013.08.019
Zhu, P., Wen, Q.: Probabilistic soft sets. IEEE International Conference on Granular Computing 51, 635-638 (2010). https://doi.org/10.1109/GrC.2010.51
Zou, Y., Xiao, Z.: Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 21(8), 941-5 (2008). https://doi.org/10.1016/j.knosys.2008.04.004
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.