Generalized Rational Type Contraction and Fixed Point Theorems in Partially Ordered Metric Spaces
PDF

Keywords

Fixed point
Metric spaces
Well ordered set
Rational contractions
Partially ordered metric space

How to Cite

Raji, M., Rathour, L., Mishra, L. N., & Mishra, V. N. (2023). Generalized Rational Type Contraction and Fixed Point Theorems in Partially Ordered Metric Spaces. Journal of Advances in Applied & Computational Mathematics, 10, 153–162. https://doi.org/10.15377/2409-5761.2023.10.13

Abstract

In this article, we establish the existence and uniqueness of fixed points for rational type contraction mappings in a metric space that is equipped with a partial order. Our results are shown to improve upon previous results in the literature, and we provide illustrative examples to demonstrate the effectiveness of our approach.

Mathematics Subject Classification: 47H10; 54H25.

https://doi.org/10.15377/2409-5761.2023.10.13
PDF

References

Ran AC, Reurings MCB. A fixed point theorem in partially ordered sets and some applications to marix equations. Proc Am Math Soc. 2004; 132(5): 1435-43.

Nieto JJ, Rodriguez-Lopez R. Contractive mapping theorems in partially ordered space and applications to ordinary differential equations. Oder. 2005; 22(3): 223-39. https://doi.org/10.1007/s11083-005-9018-5

Bhaskar TG, Lakshmikantham V. Fixed points theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006; 65: 1379-93. https://doi.org/10.1016/j.na.2005.10.017

Chatterji, H. On generalization of Banach contraction principle. Ind J Pure App Math. 1979;10: 400-3.

Dass BK, Gupta S. An extension of Banach contraction principle through rational expression. Ind J Pure App Math. 1975; 6: 1455-8.

Seshagiri RN, Kalyani K, Belay M. On fixed point theorems of monotone functions in ordered metric spaces. J Anal. 2021; 9: 1237-50. https://doi.org/10.1007/s41478-021-00308-7

Rao NS, Kalyani K. Coupled fixed point theorems with rational expressions in partially ordered metric spaces. J Anal. 2020; 28(4): 1085-95. https://doi.org/10.1007/s41478-020-00236-y

Rao NS, Kalyani K, Khatri K. Contractive mappings theorems in partially ordered metric space. Cubo. 2020; 22(2): 203-14. http://dx.doi.org/10.4067/S0719-06462020000200203

Rao NS, Kalyani K, Gemechu T. Fixed point theorems in partially ordered metric spaces with rational expressions. Inf Sci Lett. 2021; 10(3): 451-60.

Raji M. Generalized α-ψ contractive type mappings and related coincidence fixed point theorems with applications. J Anal. 2023; 31(2): 1241-56. https://doi.org/10.1007/s41478-022-00498-8

Rao NS, Kalyani K. Unique fixed point theorems in partially ordered metric spaces. Heliyon. 2020; 6(11): e05563. https://doi.org/10.1016/j.heliyon.2020.e05563

Arshad M, Karapinar E, Ahmad J. Some unique fixed point theorems for rational contractions in partially ordered metric spaces, J Inequal Appl. 2013; 2013: 248-55. https://doi.org/10.1186/1029-242X-2013-248

Raji M, Ibrahim MA. Coincidence and common fixed points for F-Contractive mappings. Ann Math Phys. 2023; 6(2): 196-212. https://dx.doi.org/10.17352/amp.000102

Chandok S, Kim JK. Fixed point theorems in ordered metric spaces for generalized contraction mappings satisfying rational type expressions. Nonlinear Funct Anal Appl. 2012; 17: 301-6.

Raji M, Ibrahim MA. Fixed point theorems for modified F-weak contractions via α-admissible mapping with application to periodic points. Ann Math Comput Sci. 2024; 20: 82-97. https://doi.org/10.56947/amcs.v20.232

Harjani J, Lopez B, Sadarangani K. A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space. Abstr Appl Anal. 2010; 2010: 1-8. https://doi.org/10.1155/2010/190701

Raji M, Ibrahim MA. Fixed point theorems for fuzzy contractions mappings in a dislocated b-metric spaces with applications. Ann Math Comput Sci. 2024; 21: 1-13. https://doi.org/10.56947/amcs.v21.233

Jaggi DS, Dass BK. An extension of Banach fixed point theorem through rational expression. Bull Cal Math Soc. 1980; 72: 261-64.

Chandok S, Kumar D. Some common fixed point results for rational type contraction mappings in partially ordered metric spaces. Math Bohem. 2013; 138(4): 407-13.

Turinici M. Abstract comparison principles and multivariable Gronwali-Bellman inequalities. J Math Anal Appl. 1986; 117: 100-27. https://doi.org/10.1016/0022-247X(86)90251-9

Agarwal RP. El-Gebeily MA, O’Regan DA. Generalized contractions in partially ordered metric spaces. Appl Anal. 2008; 87: 1-8. https://doi.org/10.1016/0022-247X(86)90251-9

Raji M, Rajpoot AK, Hussain A, Rathour L, Mishra LN, Mishra VN. Results in fixed point theorems for relational-theoretic contraction mappings in metric spaces. Tuijin Jishu. 2024; 45(1): 4356-68.

Kannan R. Some results on fixed points. Amer Math Soc. 1969; 76: 405-8. https://doi.org/10.1080/00029890.1969.12000228

Raji M, Ibrahim MA. Results in cone metric spaces and related fixed point theorems for contractive type mappings with application. Qeios. 2024; 1-17. https://doi.org/10.32388/4ON167.2

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Muhammed Raji, Laxmi Rathour, Lakshmi N. Mishra, Vishnu N. Mishra