Abstract
In this article, we establish the existence and uniqueness of fixed points for rational type contraction mappings in a metric space that is equipped with a partial order. Our results are shown to improve upon previous results in the literature, and we provide illustrative examples to demonstrate the effectiveness of our approach.
Mathematics Subject Classification: 47H10; 54H25.
References
Ran AC, Reurings MCB. A fixed point theorem in partially ordered sets and some applications to marix equations. Proc Am Math Soc. 2004; 132(5): 1435-43.
Nieto JJ, Rodriguez-Lopez R. Contractive mapping theorems in partially ordered space and applications to ordinary differential equations. Oder. 2005; 22(3): 223-39. https://doi.org/10.1007/s11083-005-9018-5
Bhaskar TG, Lakshmikantham V. Fixed points theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006; 65: 1379-93. https://doi.org/10.1016/j.na.2005.10.017
Chatterji, H. On generalization of Banach contraction principle. Ind J Pure App Math. 1979;10: 400-3.
Dass BK, Gupta S. An extension of Banach contraction principle through rational expression. Ind J Pure App Math. 1975; 6: 1455-8.
Seshagiri RN, Kalyani K, Belay M. On fixed point theorems of monotone functions in ordered metric spaces. J Anal. 2021; 9: 1237-50. https://doi.org/10.1007/s41478-021-00308-7
Rao NS, Kalyani K. Coupled fixed point theorems with rational expressions in partially ordered metric spaces. J Anal. 2020; 28(4): 1085-95. https://doi.org/10.1007/s41478-020-00236-y
Rao NS, Kalyani K, Khatri K. Contractive mappings theorems in partially ordered metric space. Cubo. 2020; 22(2): 203-14. http://dx.doi.org/10.4067/S0719-06462020000200203
Rao NS, Kalyani K, Gemechu T. Fixed point theorems in partially ordered metric spaces with rational expressions. Inf Sci Lett. 2021; 10(3): 451-60.
Raji M. Generalized α-ψ contractive type mappings and related coincidence fixed point theorems with applications. J Anal. 2023; 31(2): 1241-56. https://doi.org/10.1007/s41478-022-00498-8
Rao NS, Kalyani K. Unique fixed point theorems in partially ordered metric spaces. Heliyon. 2020; 6(11): e05563. https://doi.org/10.1016/j.heliyon.2020.e05563
Arshad M, Karapinar E, Ahmad J. Some unique fixed point theorems for rational contractions in partially ordered metric spaces, J Inequal Appl. 2013; 2013: 248-55. https://doi.org/10.1186/1029-242X-2013-248
Raji M, Ibrahim MA. Coincidence and common fixed points for F-Contractive mappings. Ann Math Phys. 2023; 6(2): 196-212. https://dx.doi.org/10.17352/amp.000102
Chandok S, Kim JK. Fixed point theorems in ordered metric spaces for generalized contraction mappings satisfying rational type expressions. Nonlinear Funct Anal Appl. 2012; 17: 301-6.
Raji M, Ibrahim MA. Fixed point theorems for modified F-weak contractions via α-admissible mapping with application to periodic points. Ann Math Comput Sci. 2024; 20: 82-97. https://doi.org/10.56947/amcs.v20.232
Harjani J, Lopez B, Sadarangani K. A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space. Abstr Appl Anal. 2010; 2010: 1-8. https://doi.org/10.1155/2010/190701
Raji M, Ibrahim MA. Fixed point theorems for fuzzy contractions mappings in a dislocated b-metric spaces with applications. Ann Math Comput Sci. 2024; 21: 1-13. https://doi.org/10.56947/amcs.v21.233
Jaggi DS, Dass BK. An extension of Banach fixed point theorem through rational expression. Bull Cal Math Soc. 1980; 72: 261-64.
Chandok S, Kumar D. Some common fixed point results for rational type contraction mappings in partially ordered metric spaces. Math Bohem. 2013; 138(4): 407-13.
Turinici M. Abstract comparison principles and multivariable Gronwali-Bellman inequalities. J Math Anal Appl. 1986; 117: 100-27. https://doi.org/10.1016/0022-247X(86)90251-9
Agarwal RP. El-Gebeily MA, O’Regan DA. Generalized contractions in partially ordered metric spaces. Appl Anal. 2008; 87: 1-8. https://doi.org/10.1016/0022-247X(86)90251-9
Raji M, Rajpoot AK, Hussain A, Rathour L, Mishra LN, Mishra VN. Results in fixed point theorems for relational-theoretic contraction mappings in metric spaces. Tuijin Jishu. 2024; 45(1): 4356-68.
Kannan R. Some results on fixed points. Amer Math Soc. 1969; 76: 405-8. https://doi.org/10.1080/00029890.1969.12000228
Raji M, Ibrahim MA. Results in cone metric spaces and related fixed point theorems for contractive type mappings with application. Qeios. 2024; 1-17. https://doi.org/10.32388/4ON167.2
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Muhammed Raji, Laxmi Rathour, Lakshmi N. Mishra, Vishnu N. Mishra