Abstract
The polyphosphate glasses with the general formulae LiMII 2(PO3)5 (M=Cu, Zn, Cd, Ba, Pb) were prepared by using the melt-quench technique. They are characterized by X-ray diffraction (XRD), density measurements and differential thermal analysis (DTA). The results show that the glass transition temperature and molar volume increase nonlinearly with increasing of the bivalent cation atomic weight in the sequence Cu<Zn<Cd<Pb<Ba. Measurements of the ionic conductivity were made in the frequency range of 20 - 106 Hz and the temperature range 25 - 300°C. It is found that the Conductivity of the LiZn2(PO3)5 and LiCu2(PO3)5 glasses are much lower than those of the other samples. The differences in conduction properties are discussed based on the structural and atomic properties of the glass components.
References
Volf MB. Chemical approach to glass: Glass Science and Technology 7. Elsevier Amsterdam 1984.
Ray NH. Composition-property relationships in inorganic oxide glasses. J Non-cryst Solids 1974; 15: 423-434. http://dx.doi.org/10.1016/0022-3093(74)90148-3
Gray PE, Klein LC. Chemical durability of sodium ultraphosphate glasses. Glass Technol 1983; 24: 202-206.
Ray NH. Inorganic polymer, Academic press, New York, 1978.
Brow RK. Review: The Structure of Simple Phosphate Glasses. J. Non-Cryst. Solids, 2000; 263-264: 1-28. http://dx.doi.org/10.1016/S0022-3093(99)00620-1
Muruganandam K, Seshasayee H, Patnaik S. An X-ray RDF study of Li2O-P2O5-LiCl glasses. Solid state Ionics, 1996; 89: 313-319. http://dx.doi.org/10.1016/0167-2738(96)00344-X
Diezel A. Die kationenfeldstarken und ihre beziehungen zu entglasungsvorg angen, zur verbindungsbildung und zu den schmelzpunkten von silicaten. Z. Elektrochem., 1942; 48: 9- 23.
Vogel W. Chemistry of glass, The American Ceramic Society, Columbus, Ohio, 1985.
Chowdri BVR, Kumari PP. Studies on Ag2O.MxOy.TeO2 (MxOy=WO3, MoO3, P2O5 and B2O3) ionic conducting glasses. Solid State Ionics, 1998; 113-115: 665-675. http://dx.doi.org/10.1016/S0167-2738(98)00393-2
Bih L, Azrour M, Manoun B, Graça MPF, and Valente MA. Raman Spectroscopy, X-Ray, SEM, and DTA Analysis of Alkali-Phosphate Glasses Containing WO3 and Nb2O5. J. Spectroscopy, 2013: 2013, Article ID 123519, 10 pages. doi:10.1155/2013/123519. http://dx.doi.org/10.1155/2013/123519
Van wazer JR, campanella DA. Structure and properties of the condensed phosphates. IV. Complex-ion formation in polyphosphate solutions. J. Am. Chem. Soc, 1950; 72: 655- 663. http://dx.doi.org/10.1021/ja01158a004
Almond DP, West AR, Grant RJ. Temperature Dependence of the A.C. Conductivity of Na Beta-Aluminum. Solid State Ionics, 1982; 8: 1277-1280.
Almond DP, Hunter CC, West AR. The Extraction of Ionic Conductivities and Hopping Rates from A C Conductivity Data. J Mater Sci 1984; 19: 3236-3248. http://dx.doi.org/10.1007/BF00549810
Joncher AK. The ‘Universal’ Dielectric Response. Nature 1977; 267: 673-679. http://dx.doi.org/10.1038/267673a0
Williams G, Watts DC, Dev SB, North AM. Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 1971; 67: 1323-1335. http://dx.doi.org/10.1039/tf9716701323
Williams G, Watts DC. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 1970; 66: 80-85. http://dx.doi.org/10.1039/tf9706600080
Bernasconi I. Electrical Conductivity in Disordered Systems. Phys Rev B 1973; 7: 2252-2260. http://dx.doi.org/10.1103/PhysRevB.7.2252
Howell FS, Bose RA, Macedo PB, Moynihan CT. Electrical relaxation in a glass-forming molten salt. J Phys Chem 1974; 78: 639-648. http://dx.doi.org/10.1021/j100599a016
Patel HK, Martin SW. Fast ionic conduction in Na2S-B2S3 glasses: Compositional contributions to nonexponentiality in conductivity relaxation in the extreme low-alkali-metal limit Phys Rev 1992; B 45: 10292-10299.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.