Abstract
The global energy crisis and the negative impact on the environment of the existing technologies have constrained researchers to capture several types of waste energy using different technologies and materials. For heat, energy harvesting technologies include a major source, the sun, and as an effective storage media, phase change materials. The current review covers experimental laboratory configurations used for thermal energy storage (TES), mainly with phase change materials as working fluids. The required characteristics of PCM-TES materials are covered. Geometric configurations, starting with simple shell-and-tube heat exchanger (HX), other multiple constructive alternatives, plate HX, and also modular HX or fixed and fluidized beds systems are overviewed in order to concentrate on heat transfer characteristics important for TES systems operation and optimization. Emphasis falls on important constructive characteristics for thermal performance, such as the heat charge and discharge rates, within specific temperature ranges, depending on the type of TES fluid used, the energy storage capacity, or density. The advantages and disadvantages of each constructive piece of equipment are critically reviewed. Some comparisons among designs are also included, with an accent on beneficial alterations to improve thermal features.
References
Ciocan A. Contributions to energy storage using hybrid systems from alternative energy sources. PhD Thesis, Ecole Nationales supérieure Mines-Télécom Atlantique, 2017.
Hauer A. Storage Technology Issues and Opportunities. International Low-Carbon Energy Technology Platform. In Proceedings of the Strategic and Cross-Cutting Workshop "Energy Storage - Issues and Opportunities", Paris, France, 2011.
Sârbu I, Sebarchievici C. A Comprehensive Review of Thermal Energy Storage". Sustainability, 2018; 10(1), 191: pp. 1-32. https://doi.org/10.3390/su10010191
IRENA Outlook: Thermal Energy Storage, IRENA supported by Federal Ministry for the Environment and Nuclear Safety, 2020.
Groulx D. The rate problem in solid-liquid phase change heat transfer: Efforts and questions toward heat exchanger design rules. In Proceedings of the 16th International Heat Transfer Conference (IHTC-16), Beijing, China, 10-15 August 2018. https://doi.org/10.1615/IHTC16.kn.000023
Wang F, Liu J, Fang X, Zhang Z. Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance. Sol. Energy Mater. Sol. Cells, 2016; 147: pp. 101-107. https://doi.org/10.1016/j.solmat.2015.12.013
Ebrahimi A, Dadvand A. Simulation of melting of a nano-enhanced phase change material (Ne PCM) in a square cavity with two heat source-sink pairs. Alexandra Eng. J. 2015; 54: pp. 1003-1017. https://doi.org/10.1016/j.aej.2015.09.007
Feng J, Huang J, Ling Z, Fang X, Zhang Z. Performance enhancement of a photovoltaic module using phase change material nanoemulsion as a novel cooling fluid. Sol. Energy Mater. Sol. Cells, 2021; 225, 111060. https://doi.org/10.1016/j.solmat.2021.111060
Liu L, Niu J. Wu J.-Y. Formulation of highly stable PCM nanoemulsions with reduced supercooling for thermal energy storage using surfactant mixtures. Sol. Energy Mater. Sol. Cells, 2021, 223: 111983. https://doi.org/10.1016/j.solmat.2021.110983
Zhang G, Yu Z, Cui G, Dou B, Lu W, Yan X. Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity. Renew. Energy, 2020, 151: pp. 542-550. https://doi.org/10.1016/j.renene.2019.11.044
Chandran M.N, Manikandan S, Suganthi K.S, Rajan K.S. Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications. Energy, 2017, 140: pp. 27-39. https://doi.org/10.1016/j.energy.2017.08.056
Liang H, Niu J, Annabattula R.K, Reddy K.S, Abbas A, Luu M.T, Gan Y, Phase change material thermal energy storage design of packed bed units, J. En. Storage, 2022; 51: 104576. https://doi.org/10.1016/j.est.2022.104576
Xu J, Yang, B. Nanostructured phase-changeable heat transfer fluids. Nanotechnol. Rev. 2013; 2: pp. 289-306. https://doi.org/10.1515/ntrev-2012-0041
Xu J, Hammouda B, Cao F, Yang B, Experimental study of thermophysical properties and nanostructure of self-assembled water/polyalphaolefin nanoemulsion fluids, Advances in Mechanical Engineering, 2015; I-8. https://doi.org/10.1177/1687814015581269
Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci, 2014; 65: pp. 67-123. https://doi.org/10.1016/j.pmatsci.2014.03.005
Zhang L, Zhou K, Wei Q, Ma L, Ye W, Li H, Zhou B, Yu Z, Te Lin C, Luo J. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy, 2019; pp. 233-234. https://doi.org/10.1016/j.apenergy.2018.10.036
Huang J, Yang L and Zhou F. Thermophysical properties and applications of nano-enhanced PCMs: an update review. Energy Convers Manag 2020; 214: 112876. https://doi.org/10.1016/j.enconman.2020.112876
Gulfam R, Meng Z and Zhang P. Advanced thermal systems driven by paraffin based phase change materials - a review. Appl Energy, 2019; 238: pp. 582-611. https://doi.org/10.1016/j.apenergy.2019.01.114
Ganatra Y, Howarter JA, Ruiz J and Marconnet A. Experimental investigation of phase change materials for thermal management of handheld devices. Int J Therm Sci, 2018; 129: pp. 358-364. https://doi.org/10.1016/j.ijthermalsci.2018.03.012
Gerkman MA, and Han GGD. Toward Controlled Thermal Energy Storage and Release in Organic Phase Change Materials. Joule 4, 2020; pp. 1621-1625. https://doi.org/10.1016/j.joule.2020.07.011
Bruno NM and Shamberger PJ. Review of metallic phase change materials for high heat flux transient thermal management applications. Appl Energy, 2020; 258: p. 113955. https://doi.org/10.1016/j.apenergy.2019.113955
Gunasekara SN, Martin V, and Chiu JN. Phase equilibrium in the design of phase change materials for thermal energy storage: state-of-the-art. Renew Sustain Energy Rev, 2017; 73, pp. 558-581. https://doi.org/10.1016/j.rser.2017.01.108
Yang T, Kang JG, Weisensee PB, Kwon B, Braun PV, Miljkovic N, and King WP. A composite phase change material thermal buffer based on porous metal foam and low melting-temperature metal alloy. Appl Phys Lett, 2020; 116: p. 071901. https://doi.org/10.1063/1.5135568
Yang X, Wei P, Wang X, and He YL. Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam. Appl Energy, 2020; 268: p. 115019. https://doi.org/10.1016/j.apenergy.2020.115019
Chen X, Tang Z, Liu P, Gao H, Chang Y and Wang G. Smart Utilization of Multifunctional Metal Oxides in Phase Change Materials. Matter, 2020; 3: pp. 708-741. https://doi.org/10.1016/j.matt.2020.05.016
Yang T, Braun PV, Miljkovic N, and King WP. Phase Change Material Heat Sink for Transient Cooling of High-Power Devices. Int J Heat Mass Transf, 2021; 170: p. 121033. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121033
Madad A, Mouhib T, and Mouhsen A. Phase Change Materials for Building Application s: A Thorough Review and New Perspectives. Buildings, 2018; 8(5): p. 63. https://doi.org/10.3390/buildings8050063
Batool M, Bolivar Osorio FJ, Nazir H, Isaza-Ruiz M, Kannan AM, Phelan P, Vignarooban K, Xu X. Recent developments in phase change materials for energy storage applications: A review. Int J Heat Mass Transf, 2019; 129: pp. 491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
Cabeza LF, Frazzica A. Recent Advancements in Materials and Systems for Thermal Energy Storage - An Introduction to Experimental Characterization Methods, Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-319-96640-3
Luo L, Le Pierrès N, Tatsidjodoung P. A review of potential materials for thermal energy storage in building applications. 2013; Renew Sust Energ Rev, 18: pp. 327-349. https://doi.org/10.1016/j.rser.2012.10.025
Praveen B, Suresh B. Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Eng Sci Tech, 2018; 21(5): pp. 1086-1094. https://doi.org/10.1016/j.jestch.2018.07.010
Barrios-Padura A, Chacartegui R, Lizana J and Valverde JM. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review." Appl Energy, 2017; 203: pp. 219-239. https://doi.org/10.1016/j.apenergy.2017.06.008
Barreneche C, Calderón A, Fernández AI, Palacios A, Prieto C, Rodriguez-Sanchez A, Segarra M. High temperature systems using solid particles as TES and HTF material: a review. Appl Energy, 2018; 213: pp. 100-111. https://doi.org/10.1016/j.apenergy.2017.12.107
Cabeza LF, Mehling H. Heat and cold storage with PCM. An up-to-date introduction into basics and applications. Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-68557-9
Miró L, Barreneche C, Cazeza LF, Ferrer G, Martorell I, Solé A. Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochim Acta, 2016; 627-629: pp. 39-47. https://doi.org/10.1016/j.tca.2016.01.014
Tamme R. Thermal analysis of phase change materials in the temperature range 120-150o C. Thermochim. Acta, 2011; 513: pp. 49-59. https://doi.org/10.1016/j.tca.2010.11.011
Li G, Hwang, Y.; Radermacher, R.; Chun, H.H. Review of cold storage materials for subzero applications. Energy 2013, 51, 1-17. https://doi.org/10.1016/j.energy.2012.12.002
Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Rev. Sustain. Energy Rev. 2012; 16: pp. 2118-2132. https://doi.org/10.1016/j.rser.2012.01.020
Chandel SS, Agarwal T. Review of current state of research on energy storage, toxicity health hazards and commercialization of phase changing materials. Rev. Sustain. Energy Rev. 2017; 67: pp. 581-596. https://doi.org/10.1016/j.rser.2016.09.070
Brancato V, Frazzica A, Sapienza A, Freni, A. Identification and characterization of promising phase change materials for solar cooling applications. Sol. Energy Mater. Sol. Cells, 2016; 160: pp.225-232. https://doi.org/10.1016/j.solmat.2016.10.026
Du K, Calautit J, Wang Z, Wu Y, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl. Energy, 2018; 220: pp.242-273. https://doi.org/10.1016/j.apenergy.2018.03.005
Gschwander, S.; Niedermaier, S.; Gamisch, S.; Kick, M.; Klunder, F.; Haussmann, T. Storage Capacity in dependency of supercooling and cycle stability of different PCM emulsions. Appl. Sci. 2021; 11, 3612. https://doi.org/10.3390/app11083612
Ye H, Ge X.-S. Preparation of polyethylene/paraffin compound as a form stable solid-liquid phase change material. Sol. Energy Mater. Sol. Cells, 2000; 64: pp. 37-44. https://doi.org/10.1016/S0927-0248(00)00041-6
Zeng J, Cao Z, Yang D.W, Xu F, Sun L.X, Zhang X.F. Effects of MWCNs on Phase Change Enthalpy and Thermal Conductivity of a Solid-Liquid Organic PCM. J. Therm. Anal. Calorim. 2009; 95: pp. 507-519. https://doi.org/10.1007/s10973-008-9275-9
Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Appl. Energy, 2009; 86: pp. 170-174. https://doi.org/10.1016/j.apenergy.2007.12.003
Alkan C, Canik G, Dunya H, Sari A. Synthesis and thermal energy storage properties of ethylene dilauroyl, dimyristoyl, and dipalmitoyl amides as novel solid-liquid phase change materials. Sol. Energy Mater. Sol. Cells, 2011; 95: pp. 1203-1210. https://doi.org/10.1016/j.solmat.2011.01.018
Agresti F, Barison S, Bobbo S, Cabaleiro D, Fedele L, Marcos M.A, Prado JI, Rossi S. Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications. Appl Therm Eng, 2019; 159: pp. 113868-113868. https://doi.org/10.1016/j.applthermaleng.2019.113868
Huang L, Petermann M. An experimental study on rheological behaviors of paraffin/water phase change emulsion. Int. J. Heat Mass Transf. 2015; 83: pp. 479-486. https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.037
Wang F, Liu J, Fang X, Zhang Z. Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance. Sol. Energy Mater. Sol. Cells 2016; 147: pp. 101-107. https://doi.org/10.1016/j.solmat.2015.12.013
Anderson R, Kawaji M, Togashi K, Ramnanan-Singh R. Forced Convection heat transfer of a phase change material (PCM) nanoemulsion. In Proceedings of the ASME 2013 Heat Transfer Summer Conference (HT2013), Minneapolis, MN, USA, 14-19 July 2013. https://doi.org/10.1115/HT2013-17810
Trinh, V, Xu J. Polyalphaolefin nanoemulsionc flowing through circular minichannels. Nanoscale Res. Lett. 2017; 12: pp. 216-227. https://doi.org/10.1186/s11671-017-1984-1
Agyenim F, Eames P, Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew energy, 2009; 35: pp. 198-207. https://doi.org/10.1016/j.renene.2009.03.010
Murray RE and Groulx D. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging. Renew Energy, 2014; 62: pp. 571-581. https://doi.org/10.1016/j.renene.2013.08.007
Karami R, Kamkari B. Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units. Appl Therm Eng, 2019; 146: pp. 45-60. https://doi.org/10.1016/j.applthermaleng.2018.09.105
Bruch A, Fourmigué JF, Longeon M, Marty P, Soupart A. Experimental and numerical study of annular PCM storage in the presence of natural convection. Appl Energy, 2013; 112: pp. 175-184. https://doi.org/10.1016/j.apenergy.2013.06.007
Groulx D, Liu C. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. Int J Therm Sci, 2014; 82: pp. 100-110. https://doi.org/10.1016/j.ijthermalsci.2014.03.014
Schalbart P, Kawaji. Comparison of paraffin nanoemulsions prepared by low-energy emulsification method for latent heat storage. Int J Therm Sci, 2013; 67: pp. 113-119. https://doi.org/10.1016/j.ijthermalsci.2012.12.007
Joneidi A, Puupponen S, Meriläinen A, Saarinen S, Seppälä A, Saari K, Ala-Nissila T. Turbulent heat transfer characteristics in a circular tube and thermal properties of n-decane-in-water nanoemulsion fluids and micelles-in-water fluids. Int J Heat Mass Transf, 2015; 81: pp. 246-251. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.029
Maloji P, Tao YX. Ratio of heat removal rate to pumping power for PCM emulsion fluids: low Reynolds number limits. IMECE, 2006; pp. 351-360. https://doi.org/10.1115/IMECE2006-14922
Ding J, Fang Y, Wang W, Yang X. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Appl Energy, 2009; 86: pp. 170-174. https://doi.org/10.1016/j.apenergy.2007.12.003
Kabbara M. Real Time Solar and Controlled Experimental Investigation of a Latent Heat Energy Storage System. MASc, Dalhousie University, USA, 2015. http://hdl.handle.net/10222/56354
Chen C, Fang Y, Gao X, Zhang H, Zhang Z, Xu T. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM. Energy Convers and Manag, 2016; 126: pp. 889-897. https://doi.org/10.1016/j.enconman.2016.08.068
Chen C, Gao X, Huang Z, Xie N, Zhang Z and Zheng X. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube. Appl Therm Eng, 2018; 137: pp. 164-172. https://doi.org/10.1016/j.applthermaleng.2018.03.048
Hosseini MJ, Ahmadi R, Bahrampoury R, Ranjbar AA. Phase change in spiral coil heat storage systems. SCS, 2018; 38: pp. 145-157. https://doi.org/10.1016/j.scs.2017.12.026
Delgado M, Lázaro A, Mazo J and Zalba B. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew Sust Energy Rev, 2012; 16(1): pp. 253-273. https://doi.org/10.1016/j.rser.2011.07.152
Ardahaie SS, Hosseini MJ, Ranjbar AA, Rahimi M. Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger. Appl Therm Eng, 2019; 159: pp. 113900. https://doi.org/10.1016/j.applthermaleng.2019.113900
Patil AR. Experimental study of coil and shell phase change material heat exchanger. MSc thesis, Dalhousie University, Halifax, Nova Scotia, Canada, 2020.
Akgun M, Aydin O, Kaygusuz K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers Manag, 2007; 48(2): pp. 669- 678. https://doi.org/10.1016/j.enconman.2006.05.014
Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in medium temperature thermal energy storage, Erythritol (melting point 117.78C) using fins and multi-tubes. In: ISES Solar World Congress 2007, 18th to 21st September 2007; Beijing, China, pp. 2726-2730. https://doi.org/10.1007/978-3-540-75997-3_550
Agyenim F, Eames P, Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew energy, 2009; 35: pp. 198-207. https://doi.org/10.1016/j.renene.2009.03.010
Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy, 2009; 83(9): pp. 1509-1520. https://doi.org/10.1016/j.solener.2009.04.007
Agyenim F, Neil Hewitt, Experimental investigation and improvement in heat transfer of paraffin PCM RT58 storage system to take advantage of low peak tariff rates for heat pump applications, Int J Low Carbon Technol, 2013; 8: pp. 260-270. https://doi.org/10.1093/ijlct/cts041
Bahrampoury R, Hosseini MJ, Rahimi M. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass Transf, 2014; 50: pp. 128-136. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.008
Avci M, Akgun M, Aydin O, Yazici MY. On the effect of the eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM. Appl ThermEng, 2014; 64(1-2): pp. 1-9. https://doi.org/10.1016/j.applthermaleng.2013.12.005
Hosseini MJ, Bahrampoury R, Pahamli Y, Ranjbar AA. Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renew Energy, 2016; 97: pp. 344-357. https://doi.org/10.1016/j.renene.2016.05.090
Kousha N, Bahrampoury R,, Pakrouh R, Rahimi M. Experimental investigation of phase change in a multitube heat exchanger. J Energy Storage, 2019; 23: pp. 292-304. https://doi.org/10.1016/j.est.2019.03.024
Cabeza LF, de Gracia A, Farid MM, Oró E. Thermal analysis of including phase change material in a domestic hot water cylinder. Appl Therm Eng, 2011; 31(17-18): pp. 3938-3945. https://doi.org/10.1016/j.applthermaleng.2011.07.043
Seddegh S, Wang X, Henderson AD. A comparative study of thermal behavior of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng, 2016; 93: pp.348-358. https://doi.org/10.1016/j.applthermaleng.2015.09.107
Seddegh S, Wang X, Joybari M. M, Haghighat F. Investigation of the effect of geometric and operating parameters on the thermal behavior of vertical shell-and-tube latent heat energy storage systems. Energy 2017; 137: pp. 69-82. https://doi.org/10.1016/j.energy.2017.07.014
Rabienataj Darzi AA, Farhadi M, Jourabian M. Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in the cylindrical annulus. Energy Convers Manag, 2016; 118: pp. 253-263. https://doi.org/10.1016/j.enconman.2016.04.016
Fang M, Chen M. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng, 2007; 27(5-6): pp. 994-1000. https://doi.org/10.1016/j.applthermaleng.2006.08.001
Lissner M, Azzouz K, Fournaison L, Leducq D, Tissot J. Performance study of latent heat accumulators: Numerical and experimental study. Appl Therm Eng, 2016; 102: pp. 604-614. https://doi.org/10.1016/j.applthermaleng.2016.03.011
Abdulateef AM, Abdulateef J, Al-Abidi AA, Mat S, Sopian K. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review. Renew Sust Energ Rev, 2018; 82: pp. 1620-1635. https://doi.org/10.1016/j.rser.2017.07.009
Gürtürk M, Kok B. A new approach in the design of heat transfer for melting and solidification of PCM. Int J Heat Mass Trans 2020; 153: p. 119671. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119671
Abdulateef AM, Abdulateef J, Sopian K, Mat S. Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins. Sol Energy, 2017; 155: pp. 142-153. https://doi.org/10.1016/j.solener.2017.06.024
Hosseinzadeh K, Mogharrebi AR, Asadi A, Paikar M, Ganji DD. Effect of fin and hybrid nanoparticles on a solid process in hexagonal triplex latent heat thermal energy storage system. J Mol Liq, 2019; 300: p. 112347. https://doi.org/10.1016/j.molliq.2019.112347
Saeed RS, Rami M, Kalra V, Sawafta R, Schlegel JP. V. Plate type heat exchanger for thermal energy storage and load shifting using phase change material. Energy Convers Manag, 2019; 181: pp. 120-132. https://doi.org/10.1016/j.enconman.2018.12.013
Bandos TV, Campos-Celador Á, Diarce G, García-Romero AM, Zubiaga JT, López LM, Sala JM. Design of a Finned Plate Latent Heat Thermal Energy Storage System for Domestic Applications. Energy Procedia, 2014; 48: pp. 300-308. https://doi.org/10.1016/j.egypro.2014.02.035
Campos-Celador, Á, Diarce GJT, Sala JM. Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system, Energy, 2013; 58: pp. 438-447. https://doi.org/10.1016/j.energy.2013.06.032
Alva G, Fang G, Lin Y, Jia Y. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sust Energ Rev, 2018; 82: pp. 273-282. https://doi.org/10.1016/j.rser.2017.10.002
Verez D, Borri E, Cabeza LF, Crespo A, deGracia A, Mselle BD, Zsembinszki G. Experimental study on two PCM Macro-encapsulation designs in a thermal energy storage tank. Appl Sci, 2021; 11: p. 6171. https://doi.org/10.3390/app11136171
Koselj R, Mlakar U, Stritih U, Stropnik R, Zavrl E. An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating. Energy Build, 2021; 248: p. 111196. https://doi.org/10.1016/j.enbuild.2021.111196
Patil R, Desai A. Performance of phase changing material in an artificially created cold region to promote latent heat thermal energy storage. J Therm Eng, 2021; 7(7): pp. 1694-1703. https://doi.org/10.18186/thermal.1025935
Kim K, Choi K, Lee K, Lee K, Kim Y. Feasibility study on a novel cooling technique using a phase change material in an automotive engine. Energy, 2010; 35(1): pp. 478-484. https://doi.org/10.1016/j.energy.2009.10.015
Liu Y, Duan J, He X, Wang Y. Experimental investigation on the heat transfer enhancement in a novel latent heat thermal storage equipment. Appl.Therm.Eng. 2018; 142: pp.361-370. https://doi.org/10.1016/j.applthermaleng.2018.07.009
Wheatley G, Rubel R.I.Design improvement of a laboratory prototype for efficiency evaluation of solar thermal water heating system using phase change material (PCMs).Results in Engineering. 2021; 12: 100301. https://doi.org/10.1016/j.rineng.2021.100301
Izquierdo-Barrientos MA, Sobrino C, Almendros-Ibáñez JA. Modeling and experiments of energy storage in a packed bed with PCM. Int J Multiph Flow, 2016; 86: pp. 1-9. https://doi.org/10.1016/j.ijmultiphaseflow.2016.02.004
Bahrampoury R, Hosseini MJ, Pakrouh R, Ranjbar AA. Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model. Energy, 2017; 140: pp. 861-878. https://doi.org/10.1016/j.energy.2017.08.055
Nallusamy N, Sampath S and Velraj R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renew Energy, 2007; 32(7): pp. 1206-1227. https://doi.org/10.1016/j.renene.2006.04.015
Almendros-Ibáñez JA, Izquierdo-Barrientos MA, Sobrino C. Thermal energy storage in a fluidized bed of PCM. Chem Eng J, 2013; 230: pp. 573-583. https://doi.org/10.1016/j.cej.2013.06.112
Almendros-Ibáñez JA, Izquierdo-Barrientos MA, Sobrino C. Modeling of the heat transfer coefficient in fixed and fluidized beds with PCM. In: Eurotherm Seminar 99: Advances in Thermal Energy Storage, 2014, Lleida. https://doi.org/10.1016/j.applthermaleng.2014.12.044
Ali HM, Bhatti MS, Rehman T, Sajawal M, Sajjad U, Raza A, Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Stud Therm Eng, 2019; 15: p. 100543. https://doi.org/10.1016/j.csite.2019.100543
Corberán JM, Esteban-Matías JC, López-Navarro A, Payá J, Torregrosa-Jaime B, Klinkner L. Experimental analysis of a paraffin-based cold storage tank. Int J Refrig, 2013; 36(6): pp. 1632-40. https://doi.org/10.1016/j.ijrefrig.2013.05.001
Corberán JM, Dolado P, Biosca-Taronger J, López-Navarro A, Peñalosa C, Lázaro A. Performance characterization of a PCM storage tank. Appl Energy, 2014; 119: pp. 151-62. https://doi.org/10.1016/j.apenergy.2013.12.041
Groulx D. The rate problem in solid-liquid phase change heat transfer: Efforts and questions toward heat exchanger design rules. IHTC-16, Beijing, China, 10-15 August 2018. https://doi.org/10.1615/IHTC16.kn.000023
Azad M, Desgrosseilliers L, Donaldson A, Groulx D, Kheiradi AC, Kabbara M, Joseph A, White M.A. Working towards solving the rate problem: geometric vs nano-enhanced PCM solutions. INNOSTORAGE -019, Ben Gurion University of the Negev, February 16-18, 2016.
Ho CJ, Viskanta R. Heat-Transfer during Inward Melting in a Horizontal Tube. Int J Heat Mass Transf, 1984; 27(5): pp. 705-716. https://doi.org/10.1016/0017-9310(84)90140-6
Bastani A, Haghighat F, Kozinski J. Designing building envelope with PCM wallboards: Design tool development. Renew Sust Energ Rev, 2014; 31: pp. 554-562. https://doi.org/10.1016/j.rser.2013.12.031
Bénard C, Gobin D, Martinez F. Melting in rectangular enclosures: experiments and numerical simulations. J Heat Transf, 1985: 107(4): pp. 794-803. https://doi.org/10.1115/1.3247506
Gau C, Viskanta R. Melting and solidification of a pure metal on a vertical wall. J Heat Transfer, 1986; 108(1): pp. 174-181. https://doi.org/10.1115/1.3246884
Wolff F, Viskanta R. Solidification of a pure metal at a vertical wall in the presence of liquid superheat. Int J Heat Mass Transf, 1988; 31(8): pp. 1735-1744. https://doi.org/10.1016/0017-9310(88)90285-2
Pal D, Joshi Y. Melting in a side heated tall enclosure by a uniformly dissipating heat source. Int J Heat Mass Transf, 2001; 44: pp. 375-387. https://doi.org/10.1016/S0017-9310(00)00116-2
Sparrow EM, Broadbent JA. Inward Melting in a Vertical Tube Which Allows Free Expansion of the Phase-Change Medium. J Heat Transf, 1982; 104(2): pp. 309-315. https://doi.org/10.1115/1.3245089
Sparrow EM, Broadbent JA. Freezing in a Vertical Tube. J Heat Transf, 1983; 105(2): pp. 217-225. https://doi.org/10.1115/1.3245566
Assis E, Katsman L, Letan R, Ziskind G. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf, 2007; 50(9-10): pp. 1790-1804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007
Mallya A, Srinivasan P. Numerical simulations and experimental investigations to study the melting behavior of beeswax in a cylindrical container at different angular positions. J Energy Storage, 2021; 44(B): 103435. https://doi.org/10.1016/j.est.2021.103435
Rathod MK, Banerjee J. Thermal performance of phase change material-based latent heat thermal storage unit. Heat Transf Res, 2013; 43(8): pp. 706-719. https://doi.org/10.1002/htj.21120
Aichouni M, Elmeriah A, Nehari D. Thermo-convective study of a shell and tube thermal energy storage unit. Period Polytech Mech Eng, 2018; 62(2): pp. 101-109. https://doi.org/10.3311/PPme.10873
Bilir L, İlken Z. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Appl Therm Eng, 2005; 25(10): pp. 1488-1502. https://doi.org/10.1016/j.applthermaleng.2004.10.005
Archibold AR, Gonzalez-Aguilar J, Rahman MM, Yogi Goswami D, Romero M and Stefanakos EK. The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells. Appl Energy, 2014; 116: pp. 243-252. https://doi.org/10.1016/j.apenergy.2013.11.048
Mazo J, Delgado M, Dolado P, Lázaro A, Peñalosa C, Marín JM. Almacenamiento térmico de energía con materiales de cambio de fase en aplicaciones de refrigeración. Avances en Ciencias y Tecnologías del Frio VII. In: VII Congreso Ibérico de Ciencias y Tecnologías del Frio, Tarragona (Spain);18-20, June 2014
Amin NAM, Belusko M, Bruno F. An effectiveness-NTU model of a packed bed PCM thermal storage system. Applied Energy. 2014; 134(C), pp. 356-362 https://doi.org/10.1016/j.apenergy.2014.08.020
Aziz S, Amin NAM, Abdul Majid MS, Bruno F. Effectiveness-NTU correlation for a TES tank comprising a PCM encapsulated in a sphere with heat transfer enhancement. Appl Therm Eng. 2018; 143, pp.1003-1010. https://doi.org/10.1016/j.applthermaleng.2018.08.017
Cabeza LF, Martorell I, Medrano M, Nogués M, Yilmaz MO, Roca J. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy, 2009; 86(10): pp. 2047-2055. https://doi.org/10.1016/j.apenergy.2009.01.014
Chen S, Chen C, Tin C, Lee T, Ke M. An experimental investigation of cold storage in an encapsulated thermal storage tank. Exp Therm Fluid Sci, 2000; 23 (3-4): pp. 133-44. https://doi.org/10.1016/S0894-1777(00)00045-5
Bédécarrats JP, Dumas JP, Falcon B, Strub F. Phase-change thermal energy storage using spherical capsules: performance of a test plant. Int J Refrig,1996; 19(3): pp. 187-96. https://doi.org/10.1016/0140-7007(95)00080-1

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Ioana G. Munteanu , Eugenia T. Iacob Tudose