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ABSTRACT 
In this research, it was tried to choose a kind of perovskite catalyst with optimized 
formulation La0.8Sr0.2Co0.66Fe0.34O3 to remove air pollutants. This perovskite catalyst 
stabilized on the various supports such as 𝛾 −alumina and ZSM-5 with the sol-gel 
synthesis technique and ceramic monolith by dip-coating method. Four different 
catalysts by variable weight percentage including PE-Al 10%, PE-Al 20%, PE-Al 30%, and 
PE-Al 40% were prepared by sol-gel synthesis technique. In this work, the XRD 
technique was used to confirm the formation of perovskite catalysts’ crystalline phases 
on the supports. As a result, XRD patterns revealed the formation of the perovskite 
phase onto the 𝛾 −alumina and zeolite supports. Activity tests of these four catalysts 
were examined in the catalytic oxidation of Toluene and CO using an experimental 
setup consisting of a tubular flow reactor at the temperature 280-400°C and 100-400°C 
for the toluene and CO removal systems, respectively. According to the results of the 
catalysts’ activity test, the alumina supported with 40% w/w perovskite catalyst showed 
the best performance, and its activity was similar to the activity of the bulk catalyst (over 
95% conversion of toluene at about 290°C). For the coated catalysts on a ceramic 
monolith, the complete removal of carbon monoxide at 50°C was lower than the 
powdered form. Results from the activity test in a toluene removal system that show 
coating of the bulk and supported catalysts on ceramic monolith; have an essential 
impact on the activity test of these catalysts.  

© 2021 Pour et al. Published by Avanti Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution Non-
Commercial License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly 
cited. (http://creativecommons.org/licenses/by-nc/4.0/) 
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1. Introduction 

Organic chemicals, including Volatile organic compounds (VOCs) that are released mainly by automobiles and 
chemical processes, are the most important cause of air pollution. The reaction between VOCs is the main reason 
for chemical smoke and acid rain formation. Developed methods are used by testers to eliminate VOCs. One of 
the efficient and economical methods for VOC removal is Catalytic oxidation [1,2]. Carbon monoxide (CO), which is 
mainly released by fossil fuels that are burned in diesel machines, is the most important cause of gas pollution [3]. 
Supported noble metal catalysts are used by some industries to remove VOC and CO [4]. However, some of the 
factors that limit their vast applications are their high cost, their tendency to poisoning and disintegration, and 
sometimes their poor thermal stability [5]. In recent years, perovskite oxide catalysts with the ABO3 formula have 
been considered by researchers because of remarkable efficiencies for VOCs and CO oxidation [6-8].  

A and B are two different cations in the perovskite structure that B atoms are more petite than A atoms [9,10]. 
Both cations can be slightly substituted to form alternative compounds of the formula A1−xA'xB1−yB'yO3 [11,12]. So, 
by the selection of the proper A' and B' ions in the mentioned formula, a catalyst with the appropriate activity can 
be obtained. Replacement of La3+ with either Sr2+ can alter the oxidation state of the transition metal cations, 
leading to structural defects and an increase in the oxygen vacancy of the perovskite catalysts, which helps to 
improve the percussion performance [13-15]. Among perovskites, lanthanum manganite, has attracted more 
attention for toluene (C7H8) and CO oxidation. This is because of its non-stoichiometric oxygen properties [16].  

LaMnO3 activity of the catalyst in toluene (C7H8) and CO oxidation was investigated by researchers [17-19]. 
However, about the result of A and B sites substitution on the physical and chemical attributes and catalytic 
efficiency of LaMnO3 perovskite for toluene (C7H8) and CO oxidation, much less work has been reported [20]. 

In recent studies, the support of perovskite catalysts on different bases and the coating of these catalysts on 
the monolith was mentioned by different researchers. In 2021, Qi et al. utilized a series of perovskites based on 
LaNixB1-xO3 (B=Co, Cu) for toluene removal. These catalysts were synthesized by the sol-gel method. Results 
revealed the best activity for a 3:1 molar ratio of Ni/Co in LaNixCo1-xO3/ perovskite [21]. In another study, Li et al. in 
2021 performed some researches around the toluene oxidation process that proposed a nano casting array 
method for the synthesis of N-L1−xSxMO (x = 0.2, 0.5, 0.8) samples. Results indicated that the Pd@N-L0.8S0.2MO 
catalyst with 2 wt% revealed the best stability [22]. In 2021, Liu et al. developed a workaround VOC (benzene and 
chlorobenzene) degradation using Porous Mn-based mullite SmMn2O5 perovskite catalyst. The synthesis 
procedure of mentioned catalyst was the in-situ dismutation method. This porous catalyst revealed better catalytic 
results compared to the bulk SmMnO3 and bulk SmMn2O5 [23]. Moreover, in another study, Yi et al. in 2021 
investigated the removal of benzene as VOC via Pd-CeMnO3 perovskite catalyst through the combination of sol-gel 
and impregnation methods. Results showed that using different Pd and Ce ions lead to the generation of more 
active oxygen. This helps to the facile activation of the benzene rings [24]. Regarding the replacement results, sites 
A and B report much less work on the physical and chemical properties and catalytic performance of LaMnO3 
perovskite for toluene (C7H8) and CO oxidation, so the study focuses on this issue. 

Therefore, in this paper, perovskites were synthesized by sol-gel technique and their catalytic activity for 
oxidation of toluene and CO was investigated. The perovskite catalyst with the optimized formulation 
La0.8Sr0.2Co0.66Fe0.34O3 was selected to remove gaseous pollutants, i.e., toluene and CO oxidation. Also, to overcome 
the low surface area and sintering of these active catalysts, it is possible to stabilize them on commercial supports 
such as alumina and monolith with high surface area and thermal resistance. Both of these catalysts are 
synthesized in bulk and supported on bases such as gamma-alumina and zeolite, etc. by the sol-gel synthesis 
technique, and their activity in pollutant removal (toluene and CO oxidation) was investigated.  

2. Materials and Methods 

2.1. Catalyst Preparation 

The perovskite with the La0.8Sr0.2Co0.66Fe0.34O3 general formula was manufactured by the sol-gel technique. 
La(NO3)3·6H2O, Sr(NO3)2, Fe(NO3)3·6H2O, and CO(NO3)2. 6H2O, purchased from Merck/Aldrich, was dissolved in 
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deionized water with appropriate ratios. Heat the solution in a hotplate to 70°C and then slowly add citric acid 
(C6H8O7) (Merck) to the solution. The molar ratio of citric acid (C6H8O7) per total nitrate was 0.255 in solution. The 
subsequent combination is heated to 80°C and vaporized until a tacky gel is gotten. For gel decomposition, the 
temperature was raised to 200°C to burn the contents and twisted into a dark powder. The dark powder was 
calcined for 5 hours in a high-temperature oven at 700°C to remove volatile compounds and increase stability. The 
sol−gel synthesis technique, as defined in another work [25], was used to synthesis the mentioned perovskite 
catalysts in this work. The samples catalyzed coated on monolith, were coated via dip-coating method similar to 
the procedure that was defined in the literature [26]. In this way, the monoliths were dipped and withdrawn in the 
custom slurry at a constant speed. Figure 1 illustrates this process for further understanding. 

 
Figure 1: Graphical representation of dip-coating technique [27]. 

2.2. Catalyst Activity Test 

Figures 2 and 3 shows the catalytic setup simple scheme used in this work. The efficiency of the catalytic 
instances was calculated by toluene and CO burning in a glass pipe (inner diameter = 8 mm), which was placed in 
a furnace as a heating chamber with electricity being the heat source having isothermal conditions though at work 
below atmospheric pressure. In any run, 200 mg of the catalyst was used for the activity tests. Considering 
Equation 1, The hourly gas flow space velocity (GHSV) was 5000 h-1, and the temperature of reaction ranged from 
100-400 °C for the CO system and ranged from 280-400°C for the toluene system. In the toluene system, the 
overall rate of volumetric flow rate was 70 mL min−1, and the composition of gas was N2= 30 mL min-1, the 
composition of the air and toluene= 40 mL min-1. In the CO system, the overall rate of volumetric flow was 200 mL 
min−1, and the composition of gas was 3000 ppm CO and 5% volume O2 stabled with Ar. The rate of conversion 
was obtained by calculating the concentrations of components as reactants and products of the reactor at various 
temperatures. The reactants and produces were investigated by gas chromatography (GC-2010) with a flame 
ionization detector (FID) From Shimadzu brand prepared. 

GHSV =
Total volumetric gaseous feed flow rate to the reactor

Total catalyst volume
[=] hିଵ (1) 

 
Figure 2: Experimental setup for Activity Test in toluene catalytic oxidation system. 
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Figure 3: Experimental setup for Activity Test in CO catalytic oxidation system. 

3. Results and Discussion 

3.1. Catalyst Structure and Characteristics 

According to the XRD patterns obtained for all four catalysts (Figures 4 and 5), they show a peak of the 
perovskite phase. However, in the catalyst 10%, due to the low amount of perovskite phase, the interaction 
between the active phase and the support phase is more substantial, and the prominent peaks are not observed 
by the XRD results. Most of the 𝛾-alumina X-ray diffraction pattern is apparent. With the increase in perovskite 
amount in the supported catalysts, the peak intensities appear for the catalysts of 20, 30, and 40%, respectively. 

     

Figure 4: XRD characteristics of different %Perovskites /   Figure 5: XRD characteristics of different %Perovskites / 
Alumina Support       ZSM-5 Support 

To study the effect of catalyst coating on a monolith in toluene and CO catalytic oxidation systems, the applied 
monolithic fragments were considered 2 cm in diameter in both systems and with 5 cm lengths for toluene and 1 
cm lengths for CO system. The amount of catalyst coated on both monoliths was about 90 mg. Figure 6 
demonstrates the illustration of these monolithic fragments before and after the catalyst coating on them. 

Figure 7 illustrates the scanning electron microscopy (SEM) images of superficial morphology and dimension 
sizes of the bulk perovskite catalyst particles. As stated by these images, the particle sizes are less than 100 nm. 
The high-magnification images show that the catalyst particles are in sheet forms and together in a cumulative 
plane. 
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Figure 6: Dip Coated Monoliths with Perovskite. The images above are related to CO systems,  
and below is related to the toluene system. 

 

Figure 7: SEM the surface morphology of bulk catalyst with the different resolution a) 2 um b) 500 nm. 

The reducibility of La0.8Sr0.2Co0.66Fe0.34O3 perovskite bulk catalysts was investigated by H2-TPR. Figure 8 shows 
the H2-TPR curves of perovskite catalysts. Autochem 2900 Temperature programmed reduction (TPR) experiments 
were done in the Micromeritics. The H2-TPR experiments were performed with a 5% H2/Ar gas flow at 20 
standards cm3/min and the rate of linear heating was 10 °C/min at 40–950 °C and the H2 rate of gas flow was 10 
ml/s. 

 

Figure 8: H2-TPR curve of bulk catalyst perovskite. 
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The curve of Figure 8 reveals that the La0.8Sr0.2Co0.66Fe0.34O3 shows two different signal peaks at 346°C and 
358°C, the first peak that relates to the reduction of Co3+ to Co2+ at 346 °C and the second one corresponds to the 
reduction of Fe4+ to Fe+3 at 358 °C. 

3.2. Mechanism of Surface Reaction 

The activity of perovskite catalysts depends on the oxidation state of the ions for oxidation of toluene and CO, 
the reduction of the cations of the transfer metal, the empty sites of oxygen concentration, the basic structural 
defect, and the surface area of a material per unit of mass (specific surface area) [28]. 

The Mars-Van Krevelen model has been widely used in the kinetic modeling of toluene, CO, or other 
hydrocarbon catalytic oxidation reactions [29]. This mechanism is based on the idea that adsorption of one 
molecule (C7H8 or CO) occurs on another molecule (O2) that has already been adsorbed on the catalyst. Reaction 
steps: 1. Adsorption of C7H8 or CO on top of adsorbed O2, 2. Adsorption of adsorbed complex 3. Desorption of 
product (CO2, H2O) 4. Adsorption of O2. We assume our reactions follow from the MVK mechanism. The chemical 
equation is as follows [30]: 

CH଼() or CO() +  Oଶ ୟୢୱ  
୩భ
→  COଶ() + HଶO()

∗ + [ ] (2) 

ads: Adsorbed O2 

*: Just produced in toluene reaction 

[  ]: Empty site on the surface of the catalyst 

k1: Rate coefficient 

Figure 9 shows that the mechanism of oxidation of toluene on perovskite catalysts. Carbon monoxide is 
converted to carbon dioxide in the presence of oxygen on perovskite catalysts. In both removal systems, the 
introduction of Sr2+ in the A-site of perovskite changes the B site ability to reduce cations. Also, on the perovskite 
surface, the presentation of cations into A sites was detected to increase Oadsorbtion/Olattice ratio and oxygen vacancy 
concentration. The catalyst reduces the activation energy and the reaction temperature. Naturally, a higher 
temperature is required to perform the reaction without the presence of a catalyst. 

CH଼ + 9Oଶ

௧௬௦௧
ሱ⎯⎯⎯⎯ሮ 7COଶ + 4Hଶ O (3) 

CO +
1

2
Oଶ 

௧௬௦௧
ሱ⎯⎯⎯⎯ሮ COଶ (4) 

 

Figure 9: Mechanism of VOC and CO Decomposition on Perovskite. 

3.3. Catalyst Activity Results 

The perovskite catalyst supported on 𝛾-alumina and ZSM-5 were prepared by different weight percentages 
containing PE-Al 10%, PE-Al 20%, PE-Al 30%, and PE-Al 40% catalysts. The activity of all four mentioned catalysts 
was studied at four temperatures of 280,320,360 and 400°C. The results are plotted in Figures 10 and 11. All of the 
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tests were reduplicated three times. Therefore, the error bars are shown in the plots. Results revealed that the 
activity of the catalyst component increases with growing temperature, but the activity of these catalysts is 
reduced compared to the bulk catalyst itself. Activity depends on the weight percent of the catalyst. The best 
activities are obtained with PE-AL-40 and PE-Z-40 catalysts. The results were in good agreement with the results 
available in the literature [31,32], which employed La0.8Sr0.2CoO3-δ and LaCoO3 catalysts for toluene oxidation 
process.  

 

Figure 10: Conversion vs. Temperature of Toluene on Perovskites /Alumina Support. 

 
Figure 11: Conversion vs. Temperature of Toluene on Perovskites /ZSM-5 Support. 

To investigate the effect of catalyst coating on monolithic substrates, a perovskite catalyst was coated on the 5 cm 
length monolith by a dip-coating method. Figure 12 illustrates the comparison of the monolithic catalyst activity 
concerning bulk powder catalysts. 

As shown in Figure 12, the initial activity of the monolithic catalyst is faintly lower than that of the bulk catalyst. 
Still, with growing temperature, the activity increases so that the temperature required for the entire combustion 
of toluene occurs at a lower temperature. The complete combustion temperature on the bulk catalyst is 300°C, 
but it is reduced to 290°C for the monolithic supported catalyst. It should be noted that this increase occurred 
when the amount of catalyst coated on the monolith was less than half the amount of catalyst tested in the bulk 
state CO2 and H2O are the products at 100% conversion. This phenomenon indicates the positive effect of the 
monolith on increasing catalyst activity. As shown in Figure 12, according to the activity curve of the bulk catalyst, 
results revealed that this perovskite catalyst can completely remove toluene at a temperature of 300°C. This 
temperature for 100% toluene conversion is considered as a basis for comparing the activity of other catalysts. 

For the catalytic combustion of CO, alumina, and zeolite (ZSM-5), supported catalysts were prepared in four 
different weight percentages of 10, 20, 30, and 40. Of these four catalysts, 10 and 20 wt% catalysts did not show 
any activity in removing carbon monoxide, which could be due to the high interaction of the perovskite phase with 
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the support. But the other two catalysts with 30 and 40 weight percentages had good reaction activity for the 
catalytic combustion of CO as shown in Figures 13 and 14. CO2 is the products at 100% conversion. 

 

Figure 12: Conversion vs. Temperature of Toluene on Bulk Perovskites & Perovskite / Monolith. 

As shown in Figure 13, 40% Catalyst is 100% conversion at 350 °C, but for 30% catalyst is achieved 100% 
conversion at 400 °C. Therefore, comparing the activity curve of these catalysts, it is clear that a 40% catalyst is a 
more desirable catalyst for the catalytic oxidation of CO. 

 

Figure 13: Conversion vs. Temperature of CO on Perovskites /Alumina Support. 

As shown in Figure 14, it is perceived that 100% conversion is achieved for 40% catalyst at 350°C. The 30% 
catalyst does not perform very well and does not reach 100% conversion. Therefore, among the catalysts 
supported on zeolite, 40% is the desired catalyst for the catalytic oxidation of CO. 

 

Figure 14: Conversion vs. Temperature of CO on Perovskites /ZSM-5 Support. 
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As shown in Figure 15,100% conversion is achieved for both catalysts at 350 ° C, which is similar to the 100% 
conversion temperature for the bulk catalyst. But the catalyst supported on zeolite has shown better initial 
activity. According to the activity curve of the bulk catalyst, it can be seen that this perovskite catalyst can 
completely remove carbon monoxide. The oxidation reaction temperature of carbon monoxide is 350 °C, 
concerning the 100% conversion temperature. 

 
Figure 15: Comparison of the activity of supported catalysts on gamma-alumina and ZSM-5 with Bulk Perovskite. 

As shown in Figure 16, 100% conversion is obtained for the monolithic catalyst at 300 °C, which is 50 °C lower 
than the temperature of 100% conversion for the bulk catalyst (350 °C). This activity is achieved while the amount 
of catalyst coated is half the amount used in each test for the bulk catalyst. Therefore, by coating, this monolith 
catalyst as a precise thin layer, the surface provided for the gas phase interaction with the catalyst surface is 
increased and higher activity is obtained. 

 
Figure 16: Conversion vs. Temperature of CO on on Bulk Perovskites & Perovskite / Monolith. 

Moreover, the amount of 0.2 g and 0.09 g of bulk catalyst and catalyst coated on the monolith is used in each 
test, respectively. That is, with a lower amount of catalyst consumed, we achieve a better or equal activity. On the 
other hand, the monolithic supported catalyst has better thermal and mechanical properties. All of the 
aforementioned obtained results were validated with the literature [33] that has similar results with this work and 
utilized LaCoO3 for the Catalytic CO oxidation and CO + NO reduction process. 

4. Conclusions 

In this work, a perovskite nano-crystalline structure was effectively synthesized by the sol-gel synthesis 
technique and coated on gamma(𝛾)-alumina and zeolite (ZSM-5) with different weight percent in order to remove 
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toluene and carbon monoxide. On the other hand, perovskite catalyst was coated on monolith by dip-coating 
method. For the mentioned catalysts investigation, this work was performed in three phases including catalysts 
characterization (XRD, SEM, H2-TPR), the surface reaction mechanism, and catalyst’s activity test. The XRD patterns 
revealed that the crystalline phase was formed. The SEM results indicated that the particle sizes were less than 
100 nm. The H2-TPR curves showed two different signal peaks at 346°C and 358°C representing the reduction of 
Co and Fe ions, respectively. The impacts of the activity test of these catalysts on the catalytic burning of toluene 
and CO in the tubular reactor showed that the supported catalysts have a positive result on the activity of the 
perovskite. Regarding the results of this test, the alumina supported with 40% w/w perovskite catalyst 
demonstrate the best performance. On the other hand, the amount of consumption of the catalyst is much lower. 
For the lower amount of catalyst substance, the catalytic activity is similar or higher than the bulk state. Moreover, 
the supported catalyst has industrial views and better thermal effects.  
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