Characterization of Filmogenic/Edible Covering Based on Pectin Extracted from Cajá (Spondias mombin) Applied to Coating Green Acerolas (Malpighia emarginata)
PDF

Keywords

Pectin
Edible coating
Acerola (Malpighia emarginata)

How to Cite

1.
Alves Asevedo E, Dantas de Oliveira Júnior S, Silvino dos Santos E. Characterization of Filmogenic/Edible Covering Based on Pectin Extracted from Cajá (Spondias mombin) Applied to Coating Green Acerolas (Malpighia emarginata). J. Chem. Eng. Res. Updates. [Internet]. 2021 Nov. 28 [cited 2024 Dec. 23];8:36-47. Available from: https://avantipublisher.com/index.php/jceru/article/view/1163

Abstract

Filmogenic coatings can be used as a post-harvest strategy to extend shelf life and ensure improvements in fruit quality and safety given their perishable nature. Due to their edibility, the composition of the coverings is a determining factor for their application, and for this reason, it is interesting and desirable that the constituents come from natural sources. The objective of the present study was to develop and characterize a pectin-based film extracted from cajá peel (Spondias mombin) and verify its efficiency as an edible coating in postharvest acerolas (Malpighia emarginata). The film was characterized in terms of mechanical properties by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM); as well as in terms of chemical properties using the analysis of structural bonds by Fourier Transformed Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). In addition, the antimicrobial activity against two bacteria was evaluated. The analyzed film was presented as a dense membrane, with the presence of pores, fissures, and a very rough surface. The degree of esterification of pectin extract from cajá peel was 44%, and for this reason it was classified as low methocxyl (LM) pectin. The filmogenic solution presented antimicrobial activity against the bacteria Pseudomonas aeruginosa and Staphylococcus aureus. The applicability of the edible coating was tested on green acerolas, monitoring their maturation stage through analyzes such as weight loss, titratable acidity, and total soluble solids. At the end of the 7 days of storage, acerolas with the application of the coating showed 8.97% weight loss while acerolas without coating showed 9.89%; the percentage of total soluble solids was 7.68% higher for acerolas with the coating, as well as ascorbic acid content was higher for the protected fruits, indicating that the coverage favored the delay in the maturation of acerolas.

https://doi.org/10.15377/2409-983X.2021.08.3
PDF

References

IBGE (Instituto Brasileiro de Geografia e Estatística). Acerola Senso Agro 2017. Disponível em: https://censos.ibge.gov.br/agro/2017/templates/censo_agro/resultadosagro/agricultura.html?localidade=0&tema=76215 (accessed Fev 09, 2022).

da Silva JDO, Wisniewski A, Carregosa ISC, da Silva WR, Abud AKS, Júnior AMO. Thermovalorization of acerola industrial waste by pyrolysis in a continuous rotary kiln reactor. J Anal Appl Pyrolysis 2022, 161, 105373. https://doi.org/10.1016/j.jaap.2021.105373

EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). (2020). Ministério da Agricultura, Pecuária e Abastecimento. https://www.embrapa.br/tema-perdas-e-desperdicio-de-alimentos/sobre-o-tema. (accessed June 15, 2020).

FAO. Savefood. 2018. http://www.fao.org/food-loss-and-food-waste/en/ (accessed June 15, 2020).

Riva SC, Opara UO, Fawole OA. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci Hortic 2020. 262: 109074. https://doi.org/10.1016/j.scienta.2019.109074

Maringgal B, Hashim N, Tawakkal ISMA, Mohamed MTM. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci & Technol 2020, 96: 253-267. https://doi.org/10.1016/j.tifs.2019.12.024

Sucheta, Chaturvedi K, Sharma N, Yadav SK. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int J Biol Macromol 2019, 133: 284-293. https://doi.org/10.1016/j.ijbiomac.2019.04.132

Sacramento CK, Souza FX. Cajá (Spondias mombin L.), Série frutas nativas, 4th. Jaboticabal: Funep 2000.

McCready RM, McComb EA. Extraction and determination of total pectic materials in fruits. Anal Chem 1952, 24(12): 1986-1988. https://doi.org/10.1021/ac60072a033

Kratchanova M, Panchev I, Pavlova E, Shtereva L. Extraction of pectin from fruit materials pretreated in an electromagnetic-field of super high-frequency. Carbohydr Polym 1994, 25(3): 141-144. https://doi.org/10.1016/0144-8617(94)90197-X

Fellah A, Anjukandi P, Waterland M R, Williams MAK. Determining the degree of methylesterification of pectin by ATR/FT-IR: Methodology optimization and comparison with theoretical calculations. Carbohydr Polym 2009, 78(4): 847-853. https://doi.org/10.1016/j.carbpol.2009.07.003

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard 8th ed, 2003. Franklin Lakes, NJ: (CLSI document M2-A8 CLSI).

Lima MRF, Luna JS, Santos AF, Andrade MCCA, Santana AEG. Antibacterial activity of some Brazilian medicinal plants. J Ethnopharmacol 2006, 105, 137-147. https://doi.org/10.1016/j.jep.2005.10.026

Correa JLG, Cacciatore FA, Silva ZE, Arakaki T. Desidratação osmótica de acerola (Malpighia emarginata D.C.) - Cinética da transferência de massa. Cienc Agron 2008, 39(3): 403-409.

Instituto Adolfo Lutz. Normas analíticas, métodos químicos e físicos para análise de alimentos, 4th ed. São Paulo: IMESP 2008.

Official methods of analysis of Associa¬tion of Official Analytical Chemists International 2th ed. Washington, 1997.

Monfregola L, Bugatti V, Amodeo P, De Luca E, Vittoria V. Physical and water sorption properties of chemically modified pectin with an environmentally friendly process. Biomacromolecules 2011, 12(6): 2311-2318. https://doi.org/10.1021/bm200376c

Kalapathy U, Proctor A. Effect of acid extraction and alcohol precipitation precipitation conditions on the yield and purity of soy hull pectin. Food Chem 2001, 73: 393-396. https://doi.org/10.1016/S0308-8146(00)00307-1

Liu Z, Pi F, Guo X, Guo X, Yu S. Characterization of the structural and emulsifying properties of sugar beet pectins obtained by sequential extraction. Food Hydrocoll 2018, 88: 31-42. https://doi.org/10.1016/j.foodhyd.2018.09.036

Turquois T, Rinaudo M, Taravel FR, Heyraud A. Extraction of highly gelling pectic substances from sugar beet pulp and potato pulp: influence of extrinsic parameters on their gelling properties. Food Hydrocoll 1999, 13: 255-262. https://doi.org/10.1016/S0268-005X(99)00007-7

Sousa ALN, Ribeiro ACB, Santos DG, Ricardo NMPS, Ribeiro MENP, Cavalcanti ESB, Cunha AP, Ricardo NMPS. Modificação química da pectina do melão caipira (Cucumis melo var. Acidulus). Quim Nova 2016, 40(5): 554-560. https://doi.org/10.21577/0100-4042.20170042

Monterrey-Quintero ES, Sobral PJA. Preparo e caracterização de proteínas miofibrilares de tilápia-do-nilo (Oreochromisniloticus) para elaboração de biofilmes. Pesqui Agropecu Bras 2000, 35: 179-189. https://doi.org/10.1590/S0100-204X2000000100020

Tavares LL, Almeida CB, Caruso IP, Cornélio ML, Lopes JFF. Effect of modified clays on the structure and functional properties of biofilms produced with zein. Food Sci Technol 2012, 32(2): 314-322. https://doi.org/10.1590/S0101-20612012005000056

Spada JC, Silva, EM, Tessaro, IC. Production and characterization of pinhão starch biofilms, Revista Brasileira de Ciências Agrárias 2014, 9(3): 365-369. https://doi.org/10.5039/agraria.v9i3a3704

Oliveira Júnior SD, Araújo JS, Asevedo EA, Medeiros FGM, Santos VS, Sousa Júnior FC et al. Exploiting films based on pectin extracted from yellow mombin (Spondias mombin L.) peel for active food packaging. Biomass Convers Biorefin 2021, 1: 123-158. https://doi.org/10.1007/s13399-021-01321-3

Batista JA, Tanada-Palmu PS, Groso CRF. Efeito da adição de ácidos graxos em filmes à base de pectina. Cienc Tecnol Alim 2005, 25(4): 781-788. https://doi.org/10.1590/S0101-20612005000400025

Andrade JR, Raphael E, Pawlicka A. Plasticized pectin-based gel electrolytes. Electrochimica Acta 2009, 54: 6479-6483. https://doi.org/10.1016/j.electacta.2009.05.098

Santos CMR, Santos DC, Freitas GB, Cardoso G. Modificação e caracterização da celulose microcristalina com anidrido succínico. 11° Congresso Brasileiro de Polímeros 2011, Campos do Jordão- SP/Brasil.

Eça KS, Machado MTC, Hubinger MD, Menegalli FC. Caracterização de filmes de pectina aditivados com compostos antioxidantes. Faculdade de Eng. de Alimentos, UNICAMP, VIII Congresso de Microscopia dos Materiais Campinas 2014, São Paulo/Brasil.

Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 2010, 82: 291-298. https://doi.org/10.1016/j.carbpol.2010.04.054

Panahirad S, Dadpour M, Peighambardoust SH, Soltanzadeh M, Gullón B, Alirezalu K, Lorenzo JM. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci Technol 2021, 110: 663-673. https://doi.org/10.1016/j.tifs.2021.02.025

Barbosa-Pereira L, Bilbao A, Vilches P, Ângul I, Luis J, Fité B, Cruz JM. Brewery waste as a potential source of phenolic compounds: optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chem 2014, 145: 191-197. https://doi.org/10.1016/j.foodchem.2013.08.033

Costa ACS, Lima MAC, Alves RE, Araújo ALS, Batista PF, Rosatti SRR, Ristow NC. Caracterização fisico-química de acerola e dos resíduos do processamento em dois estádios de maturação. III Simpósio Brasileiro de Pós-Colheita - SPC 2011, Nova Friburgo - RJ.

Gouveia AMS, Corrêa CV, Evangelista RM, Domiciano S, Mendonça VZ. Caracterização da acerola em diferentes estádios de maturação produzidas em clima Subtropical. Congresso Brasileiro de Processamento mínimo e Pós-colheita de frutas, flores e hortaliças 2015, Aracaju - SE.

Azeredo HMC, Miranda KWE, Ribeiro HL, Rosa MF, Nascimento DM. Nanoreinforced alginate-acerola puree coatings on acerola fruits. J Food Eng 2012, 113(4): 505-510. https://doi.org/10.1016/j.jfoodeng.2012.08.006

Guerreiro AC, Gago CML, Faleiro ML, Miguel MGC, Antunes MDC. Raspberry fresh fruit quality as affected by pectin- and alginate-based edible coatings enriched with essential oils, Sci Hortic 2015, 194: 138-146. https://doi.org/10.1016/j.scienta.2015.08.004

Mannozzi C, CecchinI JP, Tylewicz U, Siroli L, Patrignani F, Lanciotti R, Rocculi P, Rosa MD, Romani S. Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. Food Sci Technol 2017, 85: 440-444. https://doi.org/10.1016/j.lwt.2016.12.056

Menezes J, Athmaselvi KA. Study on effect of pectin based edible coating on the shelf life of sapota fruits. Biosci Biotechnol Res Asia 2016, 13(2): 1195-1199. https://doi.org/10.13005/bbra/2152

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Estéfani Alves Asevedo, Sérgio Dantas de Oliveira Júnior, Everaldo Silvino dos Santos