Synthesis and Potential Applications of Modified Xanthan Gum
PDF

Keywords

Xanthan gum
Protein delivery
Wastewater treatment
Biomedical application
Antibacterial materials

How to Cite

1.
Abu Elella MH. Synthesis and Potential Applications of Modified Xanthan Gum. J. Chem. Eng. Res. Updates. [Internet]. 2021 Dec. 27 [cited 2024 Dec. 23];8:73-97. Available from: https://avantipublisher.com/index.php/jceru/article/view/1166

Abstract

Designing high-performance adsorbents for wastewater treatment and antibacterial materials for food and biomedical applications and excellent drug carrier to prolong time retention of the therapeutic drug based on biodegradable polymers has gained more interest in recent years. Among these materials, xanthan gum, which is a natural polysaccharide and plays a vital role in various applications such as industry, enhanced oil recovery, water-based paints, pharmaceuticals, and personal care products because it has excellent properties such as biodegradability and non-toxicity. On the other hand, it has many affected limitations, including microbially attack, poor thermal and mechanical stability, and low surface area. So, in this review, we focused on the advanced modifications on xanthan gum and their applications in wastewater treatment, protein delivery, and designing antimicrobial materials.

https://doi.org/10.15377/2409-983X.2021.08.6
PDF

References

Kalia S, Sabaa MW, Kango S. Polymer grafting: A versatile means to modify the polysaccharides, Polysaccharide based graft copolymers, Springer 2013; pp. 1-14. https://doi.org/10.1007/978-3-642-36566-9_1

Bansal V, Sharma PK, Sharma N, Pal OP, Malviya R. Applications of chitosan and chitosan derivatives in drug delivery, Advances in Biological Research 2011; 5(1): 28-37.

Goda ES, Abu Elella MH, Gamal H, Hong SE, Yoon KR. Two-Dimensional Nanomaterials as Smart Flame Retardants for Polyurethane, Materials and Chemistry of Flame-Retardant Polyurethanes Volume 1: A Fundamental Approach, ACS Publications 2021; pp. 189-219.

Kumar A, Rao KM, Han SS. Application of xanthan gum as polysaccharide in tissue engineering: A review, Carbohydrate Polymers 2017. https://doi.org/10.1016/j.carbpol.2017.10.009

Singh RS, Kaur N, Rana V, Kennedy JF. Recent insights on applications of pullulan in tissue engineering, Carbohydrate Polymers 2016; 153: 455-462. https://doi.org/10.1016/j.carbpol.2016.07.118

Debele TA, Mekuria SL, Tsai H-C. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents, Materials Science and Engineering: C 2016; 68: 964-981. https://doi.org/10.1016/j.msec.2016.05.121

Zhang N, Wardwell PR, Bader RA. Polysaccharide-based micelles for drug delivery, Pharmaceutics 2013;5(2): 329-352. https://doi.org/10.3390/pharmaceutics5020329

Leung M, Liu C, Koon J, Fung K. Polysaccharide biological response modifiers, Immunology letters 2006; 105(2): 101-114. https://doi.org/10.1016/j.imlet.2006.01.009

Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, et al. Natural Polymers in Micro-and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part II-Polysaccharides and Proteins, Nano-and Microencapsulation: Techniques and Applications 2021; 55. https://doi.org/10.5772/intechopen.95402

Elella M, Abdel-Aziz MM, Abd El-Ghany NA. Synthesis of a high-performance antimicrobial o-quaternized alginate-a promising potential antimicrobial agent, Cellul Chem Technol Synth 2021; 55: 75-86. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.08

Goda ES, Elella MHA, Sohail M, Singu BS, Pandit B, El Shafey A, et al. N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents, International Journal of Biological Macromolecules 2021; 182: 680-688. https://doi.org/10.1016/j.ijbiomac.2021.04.024

Goda ES, Elella MHA, Hong SE, Pandit B, Yoon KR, Gamal H. Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles, Cellulose 2021; 28(8): 5087-5105. https://doi.org/10.1007/s10570-021-03833-7

Elella MHA, Goda ES, Yoon KR, Hong SE, Morsy MS, Sadak RA, et al. Novel vapor polymerization for integrating flame retardant textile with multifunctional properties, Composites Communications 2021; 24: 100614. https://doi.org/10.1016/j.coco.2020.100614

Miller T, Goude MC, McDevitt TC, Temenoff JS. Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery, Acta biomaterialia 2014; 10(4): 1705-1719. https://doi.org/10.1016/j.actbio.2013.09.039

Drogoz A, David L, Rochas C, Domard A, Delair T. Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring, Langmuir 2007; 23(22): 10950-10958. https://doi.org/10.1021/la7008545

Posocco B, Dreussi E, De Santa J, Toffoli G, Abrami M, Musiani F, et al. Polysaccharides for the delivery of antitumor drugs, Materials 2015; 8(5): 2569-2615. https://doi.org/10.3390/ma8052569

Elella MHA, Mohamed RR, Sabaa MW. Synthesis of novel grafted hyaluronic acid with antitumor activity, Carbohydrate polymers 2018; 189: 107-114. https://doi.org/10.1016/j.carbpol.2018.02.004

Kumbar S, Toti U, Deng M, James R, Laurencin C, Aravamudhan A, et al. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering, Biomedical Materials 2011; 6(6): 065005. https://doi.org/10.1088/1748-6041/6/6/065005

Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Advanced drug delivery reviews 2007; 59(4-5): 207-233. https://doi.org/10.1016/j.addr.2007.03.012

Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering, Polymers for Advanced Technologies 2014; 25(5): 448-460. https://doi.org/10.1002/pat.3266

Zohuriaan‐Mehr M, Pourjavadi A. New polysaccharide‐g‐polyacrylonitrile copolymers: synthesis and thermal characterization, Polymers for Advanced Technologies 2003; 14(7): 508-516. https://doi.org/10.1002/pat.362

Pandit B, Goda ES, Elella MHA, Ur-Rehman A, Hong SE, Rondiya SR, et al. One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors, Journal of Energy Chemistry 2022; 65: 116-126. https://doi.org/10.1016/j.jechem.2021.05.028

Kumar R, Srivastava A, Behari K. Synthesis and characterization of polysaccharide based graft copolymer by using potassium peroxymonosulphate/ascorbic acid as an efficient redox initiator in inert atmosphere, Journal of applied polymer science 2009; 112(3): 1407-1415. https://doi.org/10.1002/app.29495

Elella MHA, Sabaa M, Hanna DH, Abdel-Aziz MM, Mohamed RR. Antimicrobial pH-sensitive protein carrier based on modified xanthan gum, Journal of Drug Delivery Science and Technology 2020; 57: 101673. https://doi.org/10.1016/j.jddst.2020.101673

Katzbauer B. Properties and applications of xanthan gum, Polymer degradation and stability 1998; 59(1-3): 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8

Jeanes A, Pittsley J, Senti F. Polysaccharide B‐1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation, Journal of applied polymer science 1961; 5(17): 519-526. https://doi.org/10.1002/app.1961.070051704

Margaritis A, Zajic JE. Mixing, mass transfer, and scale‐up of polysaccharide fermentations, Biotechnology and Bioengineering 1978; 20(7): 939-1001. https://doi.org/10.1002/bit.260200702

Garcıa-Ochoa F, Santos V, Casas J, Gomez E. Xanthan gum: production, recovery, and properties, Biotechnology advances 2000; 18(7): 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1

Kennedy JF, Bradshaw I. Production, properties and applications of xanthan, Progress in industrial microbiology 1984.

Habibi H, Khosravi-Darani K. Effective variables on production and structure of xanthan gum and its food applications: A review, Biocatalysis and Agricultural Biotechnology 2017; 10: 130-140. https://doi.org/10.1016/j.bcab.2017.02.013

Ghashghaei T, Soudi MR, Hoseinkhani S. Optimization of xanthan gum production from grape juice concentrate using Plackett-Burman design and response surface methodology, Applied Food Biotechnology 2016; 3(1): 15-23.

Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, et al. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review, Journal of Environmental Chemical Engineering 2021; 9(1): 104702. https://doi.org/10.1016/j.jece.2020.104702

Faria S, de Oliveira Petkowicz CL, de Morais SAL, Terrones MGH, de Resende MM, de França FP, et al. Characterization of xanthan gum produced from sugar cane broth, Carbohydrate Polymers 2011; 86(2): 469-476. https://doi.org/10.1016/j.carbpol.2011.04.063

Jansson P-E, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from Xanthomonas campestris, Carbohydrate Research 1975; 45(1): 275-282. https://doi.org/10.1016/S0008-6215(00)85885-1

Abbaszadeh A, Lad M, Janin M, Morris G, MacNaughtan W, Sworn G, et al. A novel approach to the determination of the pyruvate and acetate distribution in xanthan, Food Hydrocolloids 2015; 44: 162-171. https://doi.org/10.1016/j.foodhyd.2014.08.014

Wang Z, Wu J, Zhu L, Zhan X. Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714, Carbohydrate Polymers 2017; 157: 521-526. https://doi.org/10.1016/j.carbpol.2016.10.033

Elella MHA, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR. Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment, International Journal of Biological Macromolecules 2021; 167: 1113-1125. https://doi.org/10.1016/j.ijbiomac.2020.11.065

Cadmus M, Rogovin S, Burton K, Pittsley J, Knutson C, Jeanes A. Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain, Canadian Journal of Microbiology 1976; 22(7): 942-948. https://doi.org/10.1139/m76-136

Sutherland I. Xanthomonas polysaccharides-improved methods for their comparison, Carbohydrate Polymers 1981; 1(2): 107-115. https://doi.org/10.1016/0144-8617(81)90003-5

Tait M, Sutherland I, Clarke-Sturman A. Effect of growth conditions on the production, composition and viscosity of Xanthomonas campestris exopolysaccharide, Microbiology 1986; 132(6): 1483-1492. https://doi.org/10.1099/00221287-132-6-1483

Moorhouse R, Walkinshaw M, Arnott S. Xanthan Gum Molecular Conformation and Interactions, ACS Publications 1977. https://doi.org/10.1021/bk-1977-0045.ch007

Cheetham NW, Mashimba EN. Proton and carbon-13 NMR studies on xanthan derivatives, Carbohydrate Polymers 1992; 17(2): 127-136. https://doi.org/10.1016/0144-8617(92)90106-Z

Holzwarth G. Conformation of the extracellular polysaccharide of Xanthomonas campestris, Biochemistry 1976; 15(19): 4333-4339. https://doi.org/10.1021/bi00664a030

Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, et al. Safety assessment of microbial polysaccharide gums as used in cosmetics, International journal of toxicology 2016; 35(1_suppl): 5S-49S. https://doi.org/10.1177/1091581816651606

Farhadi GB, Khosravi-Darani K, Nejad BN. Enhancement of Xanthan production on date extract using response surface methodology, Asian J Chem 2012; 24: 3887-3890.

Niknezhad SV, Asadollahi MA, Zamani A, Biria D. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii, International journal of biological macromolecules 2016; 82: 751-756. https://doi.org/10.1016/j.ijbiomac.2015.10.065

Leela JK, Sharma G. Studies on xanthan production from Xanthomonas campestris, Bioprocess Engineering 2000; 23(6): 687-689. https://doi.org/10.1007/s004499900054

Benny IS, Gunasekar V, Ponnusami V. Review on application of xanthan gum in drug delivery, Int J PharmTech Res 2014; 6(4): 1322-1326.

Bejenariu A, Popa M, Dulong V, Picton L, Le Cerf D. Trisodium trimetaphosphate cross-linked xanthan networks: synthesis, swelling, loading and releasing behaviour, Polymer Bulletin 2009; 62(4): 525-538. https://doi.org/10.1007/s00289-008-0033-8

Petri DF. Xanthan gum: A versatile biopolymer for biomedical and technological applications, Journal of Applied Polymer Science 2015; 132(23). https://doi.org/10.1002/app.42035

Rinaudo M, Milas M. Enzymic hydrolysis of the bacterial polysaccharide xanthan by cellulase, International Journal of Biological Macromolecules 1980; 2(1): 45-48. https://doi.org/10.1016/0141-8130(80)90009-4

Badwaik HR, Kumar Giri T, Nakhate KT, Kashyap P, Tripathi DK. Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system, Current Drug Delivery 2013; 10(5): 587-600. https://doi.org/10.2174/1567201811310050010

Krstonošić V, Dokić L, Dokić P, Dapčević T. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate, Food Hydrocolloids 2009; 23(8): 2212-2218. https://doi.org/10.1016/j.foodhyd.2009.05.003

Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum, Water Research 2009; 43(15): 3717-3726. https://doi.org/10.1016/j.watres.2009.05.046

Takeuchi A, Kamiryou Y, Yamada H, Eto M, Shibata K, Haruna K, et al. Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4, International Immunopharmacology 2009; 9(13-14): 1562-1567. https://doi.org/10.1016/j.intimp.2009.09.012

Rosalam S, England R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp, Enzyme and Microbial Technology 2006; 39(2): 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019

Palaniraj A, Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris, Journal of Food Engineering 2011; 106(1): 1-12. https://doi.org/10.1016/j.jfoodeng.2011.03.035

Chang I, Im J, Prasidhi AK, Cho G-C. Effects of Xanthan gum biopolymer on soil strengthening, Construction and Building Materials 2015; 74: 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026

Srivastava A, Mishra DK, Tripathy J, Behari K. One pot synthesis of xanthan gum‐g‐N‐vinyl‐2‐pyrrolidone and study of their metal ion sorption behavior and water swelling property, Journal of applied polymer science 2009; 111(6): 2872-2880. https://doi.org/10.1002/app.29186

Su L, Ji W, Lan W, Dong X. Chemical modification of xanthan gum to increase dissolution rate, Carbohydrate Polymers 2003; 53(4): 497-499. https://doi.org/10.1016/S0144-8617(02)00287-4

Pal S, Das R. Polysaccharide-based graft copolymers for biomedical applications, Polysaccharide Based Graft Copolymers, Springer 2013; pp. 325-345. https://doi.org/10.1007/978-3-642-36566-9_9

Kumar A, Singh K, Ahuja M. Xanthan-g-poly (acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior, Carbohydrate Polymers 2009; 76(2): 261-267. https://doi.org/10.1016/j.carbpol.2008.10.014

Li YF, Ha YM, Tao LR, Li YJ, Wang F. Preparation of xanthan gum-gN-vinylpyrrolidone by radiation and adsorption property of phenol and polyphenol, Advanced Materials Research, Trans Tech Publ, 2011; pp. 2694-2700. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2694

Caner H, Yilmaz E, Yilmaz O. Synthesis, characterization and antibacterial activity of poly (N-vinylimidazole) grafted chitosan, Carbohydrate Polymers 2007; 69(2): 318-325. https://doi.org/10.1016/j.carbpol.2006.10.008

Badwaik HR, Sakure K, Alexander A, Dhongade H, Tripathi DK. Synthesis and characterisation of poly (acryalamide) grafted carboxymethyl xanthan gum copolymer, International Journal of Biological Macromolecules 2016; 85: 361-369. https://doi.org/10.1016/j.ijbiomac.2016.01.014

Elella MHA, Mohamed RR, Abd ElHafeez E, Sabaa MW. Synthesis of novel biodegradable antibacterial grafted xanthan gum, Carbohydrate Polymers 2017; 173: 305-311. https://doi.org/10.1016/j.carbpol.2017.05.058

Pandey PK, Banerjee J, Taunk K, Behari K. Graft copolymerization of acrylic acid onto xanthum gum using a potassium monopersulfate/Fe2+ redox pair, Journal of Applied Polymer Science 2003; 89(5): 1341-1346. https://doi.org/10.1002/app.12302

Sand A, Yadav M, Behari K. Graft copolymerization of 2-Acrylamidoglycolic acid on to xanthan gum and study of its physicochemical properties, Carbohydrate Polymers 2010; 81(3): 626-632. https://doi.org/10.1016/j.carbpol.2010.03.022

Pandey S, Mishra SB. Graft copolymerization of ethylacrylate onto xanthan gum, using potassium peroxydisulfate as an initiator, International Journal of Biological Macromolecules 2011; 49(4): 527-535. https://doi.org/10.1016/j.ijbiomac.2011.06.005

Mundargi RC, Patil SA, Aminabhavi TM. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs, Carbohydrate Polymers 2007; 69(1): 130-141. https://doi.org/10.1016/j.carbpol.2006.09.007

Jayaramudu T, Ko H-U, Zhai L, Li Y, Kim J. Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior, Soft Materials 2017; 15(1): 64-72. https://doi.org/10.1080/1539445X.2016.1246458

Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release, Advanced Drug Delivery Reviews 1993;11(1-2): 1-35. https://doi.org/10.1016/0169-409X(93)90025-Y

Pekel N, Güven O. Synthesis and characterization of poly (N‐vinyl imidazole) hydrogels cross-linked by gamma irradiation, Polymer International 2002; 51(12): 1404-1410. https://doi.org/10.1002/pi.1065

Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environmental Chemistry Letters 2017; 1-34. https://doi.org/10.1007/s10311-017-0671-x

Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review, Journal of Advanced Research 2015; 6(2): 105-121. https://doi.org/10.1016/j.jare.2013.07.006

Brannon-Peppas L, Peppas NA. Equilibrium swelling behavior of pH-sensitive hydrogels, Chemical Engineering Science 1991; 46(3): 715-722. https://doi.org/10.1016/0009-2509(91)80177-Z

Liu K-H, Liu T-Y, Chen S-Y, Liu D-M. Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electrostimulation, Acta Biomaterialia 2008; 4(4): 1038-1045. https://doi.org/10.1016/j.actbio.2008.01.012

Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials, Progress in Polymer Science 2010; 35(1-2): 278-301. https://doi.org/10.1016/j.progpolymsci.2009.10.008

Kamath KR, Park K. Biodegradable hydrogels in drug delivery, Advanced drug delivery reviews 1993; 11(1-2): 59-84. https://doi.org/10.1016/0169-409X(93)90027-2

Manjula B, Reddy AB, Jayaramudu T, Sadiku E, Owonubi S, Agboola O, et al. Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications, Handbook of Composites from Renewable Materials, Nanocomposites: Science and Fundamentals 2017; 7: 67. https://doi.org/10.1002/9781119441632.ch127

Tanaka Y, Gong JP, Osada Y. Novel hydrogels with excellent mechanical performance, Progress in Polymer science 2005; 30(1): 1-9. https://doi.org/10.1016/j.progpolymsci.2004.11.003

Bekin S, Sarmad S, Gürkan K, Keçeli G, Gürdağ G. Synthesis, characterization and bending behavior of electroresponsive sodium alginate/poly (acrylic acid) interpenetrating network films under an electric field stimulus, Sensors and Actuators B: Chemical 2014; 202: 878-892. https://doi.org/10.1016/j.snb.2014.06.051

Mellati A, Dai S, Bi J, Jin B, Zhang H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells, RSC Advances 2014; 4(109): 63951-63961. https://doi.org/10.1039/C4RA12215A

Discher DE, Janmey P, Wang Y-l. Tissue cells feel and respond to the stiffness of their substrate, Science 2005; 310(5751): 1139-1143. https://doi.org/10.1126/science.1116995

Giri T, Choudhary C, Alexander A. Sustained release of diltiazem hydrochloride from cross-linked biodegradable IPN hydrogel beads of pectin and modified xanthan gum, Indian journal of pharmaceutical sciences 2013; 75(6): 619.

Raveendran RL, Devaki SJ, Nampoothiri KM. Facile strategy for the development of polyglucopyranose-silver hydrogel/films for antimicrobial applications, RSC Advances 2016; 6(114): 113648-113656. https://doi.org/10.1039/C6RA21632C

Pekel N, Güven O. Separation of heavy metal ions by complexation on poly (N-vinyl imidazole) hydrogels, Polymer Bulletin 2004; 51(4): 307-314. https://doi.org/10.1007/s00289-004-0224-x

Sadeghi M, Soleimani F. Synthesis and characterization superabsorbent hydrogelsfor oral drug delivery systems, International Journal of Chemical Engineering and Applications 2011; 2(5): 314. https://doi.org/10.7763/IJCEA.2011.V2.125

Gils PS, Ray D, Sahoo PK. Characteristics of xanthan gum-based biodegradable superporous hydrogel, International journal of biological macromolecules 2009; 45(4): 364-371. https://doi.org/10.1016/j.ijbiomac.2009.07.007

Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY. Novel modified starch-xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization, Carbohydrate Polymers 2010; 79(4): 898-907. https://doi.org/10.1016/j.carbpol.2009.10.016

Argin S, Kofinas P, Lo YM. The cell release kinetics and the swelling behavior of physically cross-linked xanthan-chitosan hydrogels in simulated gastrointestinal conditions, Food Hydrocolloids 2014; 40: 138-144. https://doi.org/10.1016/j.foodhyd.2014.02.018

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 1970; 227(5259): 680. https://doi.org/10.1038/227680a0

He Y, Yeung ES. Rapid determination of protein molecular weight by the Ferguson method and multiplexed capillary electrophoresis, Journal of Proteome Research 2002; 1(3): 273-277. https://doi.org/10.1021/pr025507i

Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear, Nanoscale Research Letters 2014; 9(1): 343. https://doi.org/10.1186/1556-276X-9-343

Bueno VB, Petri DFS. Xanthan hydrogel films: Molecular conformation, charge density and protein carriers, Carbohydrate Polymers 2014; 101: 897-904. https://doi.org/10.1016/j.carbpol.2013.10.039

Raoufinia R, Mota A, Keyhanvar N, Safari F, Shamekhi S, Abdolalizadeh J. Overview of albumin and its purification methods, Advanced Pharmaceutical Bulletin 2016; 6(4): 495. https://doi.org/10.15171/apb.2016.063

Maiti S, Ray S, Mandal B, Sarkar S, Sa B. Carboxymethyl xanthan microparticles as a carrier for protein delivery, Journal of Microencapsulation 2007; 24(8): 743-756. https://doi.org/10.1080/02652040701647300

Sabaa MW, Hanna DH, Elella MHA, Mohamed RR. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery, Materials Science and Engineering: C 2019; 94: 1044-1055. https://doi.org/10.1016/j.msec.2018.10.040

Abu Elella MH, Hanna DH, Mohamed RR, Sabaa MW. Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier, Polymer Bulletin 2021; 1-22. https://doi.org/10.1007/s00289-021-03656-3

Liu B, Chen X, Zheng H, Wang Y, Sun Y, Zhao C, et al. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups, Carbohydrate Polymers 2018; 181: 327-336. https://doi.org/10.1016/j.carbpol.2017.10.089

Kumari HJ, Krishnamoorthy P, Arumugam T, Radhakrishnan S, Vasudevan D. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent, International Journal of Biological Macromolecules 2017; 96: 324-333. https://doi.org/10.1016/j.ijbiomac.2016.11.077

Abu-Thabit NY, Uwaezuoke OJ, Elella MHA. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures, Chemosphere 2022; 133644. https://doi.org/10.1016/j.chemosphere.2022.133644

Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource technology 2001; 77(3): 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8

Thakur S, Arotiba O. Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate-based TiO2 hydrogel nanocomposite, Adsorption Science & Technology 2018; 36(1-2): 458-477. https://doi.org/10.1177/0263617417700636

Mittal H, Parashar V, Mishra S, Mishra A. Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution, Chemical Engineering Journal 2014; 255: 471-482. https://doi.org/10.1016/j.cej.2014.04.098

Hu F, Fang C, Wang Z, Liu C, Zhu B, Zhu L. Poly (N-vinyl imidazole) gel composite porous membranes for rapid separation of dyes through permeating adsorption, Separation and Purification Technology 2017; 188: 1-10. https://doi.org/10.1016/j.seppur.2017.06.024

Mittal H, Kumar V, Ray SS. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel, International Journal of Biological Macromolecules 2016; 89: 1-11. https://doi.org/10.1016/j.ijbiomac.2016.04.050

Kumari K, Abraham TE. Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast, Bioresource Technology 2007; 98(9): 1704-1710. https://doi.org/10.1016/j.biortech.2006.07.030

Martins LR, Rodrigues JAV, Adarme OFH, Melo TMS, Gurgel LVA, Gil LF. Optimization of cellulose and sugarcane bagasse oxidation: Application for adsorptive removal of crystal violet and auramine-O from aqueous solution, Journal of Colloid and Interface Science 2017; 494: 223-241. https://doi.org/10.1016/j.jcis.2017.01.085

Crini G. Non-conventional low-cost adsorbents for dye removal: a review, Bioresource Technology 2006; 97(9): 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001

Tahir S, Rauf N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere 2006; 63(11): 1842-1848. https://doi.org/10.1016/j.chemosphere.2005.10.033

Bajpai SK, Jain A. Equilibrium and thermodynamic studies for adsorption of crystal violet onto spent tea leaves (STL), Water 2012; 4: 52-71.

Mani S, Bharagava RN. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, Reviews of Environmental Contamination and Toxicology Springer 2016; 237: pp. 71-104. https://doi.org/10.1007/978-3-319-23573-8_4

Wang Y, Liao K, Huang X, Yuan D. Simultaneous determination of malachite green, crystal violet and their leuco-metabolites in aquaculture water samples using monolithic fiber-based solid-phase microextraction coupled with high performance liquid chromatography, Analytical Methods 2015; 7(19): 8138-8145. https://doi.org/10.1039/C5AY01611H

Lee JB, Yun Kim H, Mi Jang Y, Young Song J, Min Woo S, Sun Park M, et al. Determination of malachite green and crystal violet in processed fish products, Food Additives and Contaminants 2010; 27(7): 953-961. https://doi.org/10.1080/19440041003705839

Abu Elella MH, ElHafeez EA, Goda ES, Lee S, Yoon KR. Smart bactericidal filter containing biodegradable polymers for crystal violet dye adsorption, Cellulose 2019; 26(17): 9179-9206. https://doi.org/10.1007/s10570-019-02698-1

Hasan I, Bassi A, Alharbi KH, BinSharfan II, Khan RA, Alslame AJC. Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@ NiFe2O4 Spinel Ferrite, 2020; 10(12): 1200. https://doi.org/10.3390/coatings10121200

Baeissa EJJOA. Compounds, Photocatalytic degradation of malachite green dye using Au/NaNbO3 Nanoparticles, 2016; 672: 564-570. https://doi.org/10.1016/j.jallcom.2016.02.024

Hasan I, Bhatia D, Walia S, Singh PJGFSD. Removal of malachite green by polyacrylamide-g-chitosan γ-Fe2O3 nanocomposite-an application of central composite design, 2020; 11: 100378. https://doi.org/10.1016/j.gsd.2020.100378

Elella MHA, Aamer N, Mohamed Y, El Nazer HA, Mohamed RR. Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment, Polymer Bulletin 2022; 1-17. https://doi.org/10.1007/s00289-022-04079-4

Ghorai S, Sarkar A, Raoufi M, Panda AB, Schönherr H, Pal S. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica, ACS Applied Materials & Interfaces 2014; 6(7): 4766-4777. https://doi.org/10.1021/am4055657

Ghorai S, Sarkar AK, Panda AB, Pal S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent, Bioresource technology 2013; 144: 485-491. https://doi.org/10.1016/j.biortech.2013.06.108

Makhado E, Pandey S, Nomngongo P, Ramontja J. Xanthan gum-cl-poly (acrylic acid)/reduced graphene oxide hydrogel nanocomposite as adsorbent for dye removal, 9th Int'l Conf. on Advances in Science, Engineering, Technology & Waste Management 2017; (ASETWM-17): pp. 159-164.

Thakur S, Pandey S, Arotiba OA. Sol-gel derived xanthan gum/silica nanocomposite-a highly efficient cationic dyes adsorbent in aqueous system, International journal of biological macromolecules 2017; 103: 596-604. https://doi.org/10.1016/j.ijbiomac.2017.05.087

Tanzifi M, Esmizadeh E, Bazgir H, Nazari A, Vahidifar A. Adsorption of methylene blue dye from aqueous solution using polyaniline/xanthan gum nanocomposite: kinetic and isotherm studies, J Polym Compos 2019; 7: 17-26.

Hosseini SM, Shahrousvand M, Shojaei S, Khonakdar HA, Asefnejad A, Goodarzi V. Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability, International journal of biological macromolecules 2020; 152: 884-893. https://doi.org/10.1016/j.ijbiomac.2020.02.082

Ahmad R, Mirza A. Green synthesis of Xanthan gum/Methionine-bentonite nanocomposite for sequestering toxic anionic dye, Surfaces and Interfaces 2017; 8: 65-72. https://doi.org/10.1016/j.surfin.2017.05.001

Chen X, Li P, Zeng X, Kang Y, Wang J, Xie H, et al. Efficient adsorption of methylene blue by xanthan gum derivative modified hydroxyapatite, International journal of biological macromolecules 2019. https://doi.org/10.1016/j.ijbiomac.2019.10.145

Sharma J, Kaith BS, Sharma AK, Goel A. Gum xanthan-psyllium-cl-poly (acrylic acid-co-itaconic acid) based adsorbent for effective removal of cationic and anionic dyes: adsorption isotherms, kinetics and thermodynamic studies, Ecotoxicology and Environmental Safety 2018; 149: 150-158. https://doi.org/10.1016/j.ecoenv.2017.11.030

Mittal H, Babu R, Alhassan SM. Utilization of gum xanthan based superporous hydrogels for the effective removal of methyl violet from aqueous solution, International Journal of Biological Macromolecules 2020; 143: 413-423. https://doi.org/10.1016/j.ijbiomac.2019.11.008

Elella MHA, Goda ES, Gamal H, El-Bahy SM, Nour MA, Yoon KR. Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye, International Journal of Biological Macromolecules 2021; 191: 385-395. https://doi.org/10.1016/j.ijbiomac.2021.09.040

Mohamed RR, Abu Elella MH, Sabaa MW, Saad GR. Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution, Cellulose 2018; 25(11): 6513-6529. https://doi.org/10.1007/s10570-018-2014-x

Elella MHA, Sabaa MW, Abd ElHafeez E, Mohamed RR. Crystal violet dye removal using cross-linked grafted xanthan gum, International journal of biological macromolecules 2019; 137: 1086-1101. https://doi.org/10.1016/j.ijbiomac.2019.06.243

Zheng M, Lian F, Xiong Y, Liu B, Zhu Y, Miao S, et al. The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel, Food chemistry 2019; 272: 574-579. https://doi.org/10.1016/j.foodchem.2018.08.083

Pandey N, Shukla S, Singh N. Water purification by polymer nanocomposites: an overview, Nanocomposites 2017; 3(2): 47-66. https://doi.org/10.1080/20550324.2017.1329983

Lim AP, Aris AZ. A review on economically adsorbents on heavy metals removal in water and wastewater, Reviews in Environmental Science and Bio/Technology 2014; 13(2): 163-181. https://doi.org/10.1007/s11157-013-9330-2

Ghorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S. Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution, Bioresource Technology 2012; 119: 181-190. https://doi.org/10.1016/j.biortech.2012.05.063

Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S. Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater, Bioresource technology 2020; 123296. https://doi.org/10.1016/j.biortech.2020.123296

Ahmad R, Mirza A. Application of Xanthan gum/n-acetyl cysteine modified mica bionanocomposite as an adsorbent for the removal of toxic heavy metals, Groundwater for Sustainable Development 2018; 7: 101-108. https://doi.org/10.1016/j.gsd.2018.03.010

Jalali MA, Koohi AD, Sheykhan M. Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: kinetic and equilibrium study, Carbohydrate Polymers 2016; 142: 124-132. https://doi.org/10.1016/j.carbpol.2016.01.033

Zhang S, Xu F, Wang Y, Zhang W, Peng X, Pepe F. Silica modified calcium alginate-xanthan gum hybrid bead composites for the removal and recovery of Pb (II) from aqueous solution, Chemical Engineering Journal 2013; 234: 33-42. https://doi.org/10.1016/j.cej.2013.08.102

Iftekhar S, Srivastava V, Hammouda SB, Sillanpää M. Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements, Carbohydrate polymers 2018; 194: 274-284. https://doi.org/10.1016/j.carbpol.2018.04.054

Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry, Meat Science 2002; 62(3): 373-380. https://doi.org/10.1016/S0309-1740(02)00121-3

Gurbuz O, Sahan Y, Kara A, Osman B. In-Vitro Characterization of Antimicrobial Effect of Polyvinylimidazole, Hacettepe Journal of Biology and Chemistry 2009; 37: 353-7.

Zheng L-Y, Zhu J-F. Study on antimicrobial activity of chitosan with different molecular weights, Carbohydrate Polymers 2003; 54(4): 527-530. https://doi.org/10.1016/j.carbpol.2003.07.009

Kaith B, Jindal R, Kumari M, Kaur M. Biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release, Reactive and Functional Polymers 2017; 120: 1-13. https://doi.org/10.1016/j.reactfunctpolym.2017.08.012

Kim J, Hwang J, Seo Y, Jo Y, Son J, Choi J. Engineered chitosan-xanthan gum biopolymers effectively adhere to cells and readily release incorporated antiseptic molecules in a sustained manner, Journal of Industrial and Engineering Chemistry 2017; 46: 68-79. https://doi.org/10.1016/j.jiec.2016.10.017

Swatantra K, Awani R, Satyawan S. Chitosan. A platform for targeted drug delivery, Int J of pharm tech research 2010; 2: 2271-2282.

Ilium L. Chitosan and its use as a pharmaceutical excipient, Pharmaceutical Research 1998; 15(9): 1326-1331. https://doi.org/10.1023/A:1011929016601

Badwan AA, Rashid I, Al Omari MM, Darras FH. Chitin and chitosan as direct compression excipients in pharmaceutical applications, Marine Drugs 2015; 13(3): 1519-1547. https://doi.org/10.3390/md13031519

Duttagupta DS, Jadhav VM, Kadam VJ. Chitosan: a propitious biopolymer for drug delivery, Current Drug Delivery 2015; 12(4): 369-381. https://doi.org/10.2174/1567201812666150310151657

Ariful Islam M, Park T-E, Reesor E, Cherukula K, Hasan A, Firdous J, et al. Mucoadhesive chitosan derivatives as novel drug carriers, Current pharmaceutical design 2015; 21(29): 4285-4309. https://doi.org/10.2174/1381612821666150901103819

Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications, Marine drugs 2015; 13(8): 5156-5186. https://doi.org/10.3390/md13085156

Ferrero F, Periolatto M. Antimicrobial finish of textiles by chitosan UV-curing, Journal of Nanoscience and Nanotechnology 2012; 12(6): 4803-4810. https://doi.org/10.1166/jnn.2012.4902

Despond S, Espuche E, Cartier N, Domard A. Barrier properties of paper-chitosan and paper-chitosan-carnauba wax films, Journal of applied polymer science 2005; 98(2): 704-710. https://doi.org/10.1002/app.21754

Elella MHA, Shalan AE, Sabaa MW, Mohamed RR. One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens, RSC Advances 2022; 12(2): 1095-1104. https://doi.org/10.1039/D1RA07070C

Dai J, Yan H, Yang H, Cheng R. Simple method for preparation of chitosan/poly (acrylic acid) blending hydrogel beads and adsorption of copper (II) from aqueous solutions, Chemical Engineering Journal 2010; 165(1): 240-249. https://doi.org/10.1016/j.cej.2010.09.024

Ortega-Ortiz H, Gutiérrez-Rodríguez B, Cadenas-Pliego G, Jimenez LI. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly (acrylic acid)-chitosan, Brazilian Archives of Biology and Technology 2010; 53(3): 623-628. https://doi.org/10.1590/S1516-89132010000300016

Jones CG. Chlorhexidine: is it still the gold standard?, Periodontology 1997; 15(1): 55-62. https://doi.org/10.1111/j.1600-0757.1997.tb00105.x

Huynh TTN, Padois K, Sonvico F, Rossi A, Zani F, Pirot F, et al. Characterization of a polyurethane-based controlled release system for local delivery of chlorhexidine diacetate, European Journal of Pharmaceutics and Biopharmaceutics 2010; 74(2): 255-264. https://doi.org/10.1016/j.ejpb.2009.11.002

Paolantonio M, D'angelo M, Grassi RF, Perinetti G, Piccolomini R, Pizzo G, et al. Clinical and microbiologic effects of subgingival controlled-release delivery of chlorhexidine chip in the treatment of periodontitis: a multicenter study, Journal of periodontology 2008; 79(2): 271-282. https://doi.org/10.1902/jop.2008.070308

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Mahmoud H. Abu Elella