The Influence of Concentration on the Formation of Chemical Bath Deposited Copper Tin Sulphide Thin Films: SEM and EDX Studies
PDF

Keywords

Thin films
Semiconductor
Ternary compound
Metal chalcogenide
Chemical bath deposition

How to Cite

1.
Soonmin H. The Influence of Concentration on the Formation of Chemical Bath Deposited Copper Tin Sulphide Thin Films: SEM and EDX Studies. J. Chem. Eng. Res. Updates. [Internet]. 2022 Aug. 24 [cited 2024 Sep. 17];9:22-9. Available from: https://avantipublisher.com/index.php/jceru/article/view/1272

Abstract

Nanostructured copper tin sulphide films have been deposited on the substrate (soda lime glass) via an economical chemical bath deposition method. The scanning electron microscopy (SEM) technique and energy dispersive X-ray analyzer (EDX) method were employed in this work to study the films’ morphology and composition. The EDX data and SEM images confirmed that the content of elements (sulfur, tin, and copper), the shape, and the grain size strongly depended on the concentration of the precursors during the formation of films. Experimental results revealed that a higher atomic percentage of the element could be observed for the films prepared using a higher concentration of solution during the experiment.

https://doi.org/10.15377/2409-983X.2022.09.3
PDF

References

Veera P, Vadivu S, Mouli B. A review on thin films, conducting polymers as sensor devices. Mater. Res. Express, 2022; https://doi.org/10.1088/2053-1591/ac4aa1.

Haloui H, Zaabat M, Touafek K, Khelifa A, Ben H. The copper indium selenium (CuInSe2) thin Films solar cells for hybrid photovoltaic thermal collectors (PVT). Energy Proc. 2015; 74: 1213-1219.

Ali M, Pinar Y, Bahadir T. Synthesis of CIS (CuInSe2) based materials for solar applications. J. Chem. 2018; https://doi.org/10.1155/2018/5187960.

Kaiser N. Review of the fundamentals of tin film growth. Appl. Opt. 2002; 41: 3053-3060.

Ho SM. A review on thin films on indium tin oxide coated glass substrate. Asian J. Chem. 2016; 28: 469-472.

Esther T, Oluseyi O, Stephen A, Ude A, Abegunde O. Overview of thin film deposition techniques. AIMS Mater. Sci. 2019; 6: 174-199.

Bhabad D. Thin film deposition technique: review. Open Access Int. J. Sci. Eng. 2018; 3: 84-96.

Temesgen G. Thin film deposition and characterization techniques. J. 3D Print. Appl. 2022; DOI: 10.14302/issn.2831-8846.j3dpa-22-4066.

Lee D, Ebong U. A review of thin film solar cell technologies and challenges. Renew. Sust. Energy Rev. 2017; 70: 1286-1297.

Ho SM. Metal selenide semiconductor thin films: a review. Int. J. ChemTech Res. 2016; 9: 390-395.

Ho SM. Role of the complexing agent in chemical bath deposition of thin films: A review, Aust. J. Basic Appl. Sci. 2015; 9: 625-629.

Ho SM. Review of recent research on penternary nanostructured thin films. ARPN J. Eng. Appl. Sci. 2019; 14, 270-277.

Ghulam N, Amin F, Jacob J, Tahir M, Tanveer M, Zahid U, Hussain S. Smooth growth, characterization and optical properties of Cu2SnS3 thin film via spray pyrolysis method. Phys. B Condens. Matter, 2021; https://doi.org/10.1016/j.physb.2020.412498.

Ju L, Kim Y, Mahesh P, Ma V, Dong L, Jin K. Fabrication of Cu2SnS3 thin film solar cells using Cu/Sn layered metallic precursors prepared by a sputtering process. Sol. Energy, 2017; https://doi.org/10.1016/j.solener.2016.09.041.

Sayed M, Robert V, Dale J, Levent G. Cu2SnS3 based thin film solar cells from chemical spray pyrolysis. Thin Solid Films, 2019; 69: 436-439. [

Ghanwat B, Mane M, Khot K, Mane S, Patil S. Nanocrystalline MoBi2Se5 ternary mixed metal chalcogenide thin-films for solar cell applications. Proc. Mater. Sci. 2014; 6: 1285-1291.

Ajalkar B, Burungale S, Bhange D, Bhosale N. Chemical synthesis and compositional analysis of mixed [Mo(S1 − x Se x )2] semiconductor thin films. J. Mater. Sci. 2004; 39: 1659-1664.

Cheng K, Wang S. Influence of chelating agents on the growth and photoelectrochemical responses of chemical bath-synthesized AgIn5S8 film electrodes. Sol. Energy Mater. Sol. Cells, 2009; 93: 307-314.

Bassam A. Electrodeposition of CuInSe2 thin films and their characteristics. Phys. B Condens. Matter, 1999; 266: 192-197.

Artaud M, Martin L, Ouchen F. CuInSe2 thin films grown by MOCVD: characterization, first devices. Thin Solid Films, 198; 324: 115-123.

Patil S, Sagar M, Mane S, Bhosale N. Growth mechanism and characterization of chemically grown Sb doped Bi2Se3 thin films. Appl. Surf. Sci. 2008; 254: 5261-5265.

Guha P, Roy S, Pal K, Chaudhuri S. Synthesis and characterization of CuGaTe2 films prepared by three source co-evaporation technique. J. Phys. D Appl. Phys. 2002; 35: 1504-1511.

Boustani M, Assali K, Bekkay T, Dreesen L, Khiara A, Ech E. Characterization of CuInTe2 thin films prepared by flash evaporation. Semicond. Sci. Technol. 1997; 12; 1658-1661.

Murali K, Srinivasan K, Vinothini C. Characteristics of pulse plated copper indium telluride films. Mater. Sci. Semicond. Process. 2012; 15: 194-198.

Mahalingam T, Kim T, Kim D, Sebastian J. Studies on electroplated copper indium telluride thin films. J. New Mater. Electrochem. Syst. 2010; 13: 77-82.

Agilan S, Velumani S, Mangalaraj D, Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method. Vacuum, 2007; 81: 813-818.

Shan Y, Sun S, Shan L, Dang P. Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method. J. Northeastern Univ. 2009; 30: 233-237.

Hankae P, Chate A, Rathod K, Mulla S, Jadhav V. Preparation and characterization of CuInSe2 thin films by chemical bath deposition technique. J. Alloys Compd., 2010; 500: 78-81.

Sanjaysinh M, Sunil C, Jiten P, Khimani J. Characterization of CBD deposited CuInSe2 thin film. Mater. Sci. Semicond. Process. 2018; 74: 329-35.

Malle K, Tuula L, Lauri N. Formation of CuInS2 in spray pyrolysis process as simulated by thermal analysis. Jpn. J. Appl. Phys. 2000; 39: 181-186.

Wahabb E, Bekheet A. Effect of annealing on the optical properties of Ag33Sb31Se36 thin films. Appl. Surf. Sci. 2001; 173: 103-114.

Hussain A, Podder J, Saha D. Synthesis of CuInS2 thin films by spray pyrolysis deposition system. Indian J. Phys. 2013; 87: 141-146.

Yong S, Xue F, LiC, Qu Z, Li X. Effects of hydrothermal annealing on characteristics of CuInS2 thin films by SILAR method. Appl. Surf. Sci. 2012; 258: 7465-7469.

Maheswari B, Dhanam M. Optimization of deposition temperature of SILAR Cu-rich CuInS2 thin films. Mater. Sci. Poland, 2013; 31 193-200.

Guan R, Wang X, Sun Q. Structural and optical properties of CuInS2 thin films prepared by magnetron sputtering and sulfurization heat treatment. J. Nanomaterials, 2015; https://doi.org/10.1155/2015/579489.

Anwar U. A beginners’ guide to scanning electron microscopy. Springer: Berlin, 2018.

Ram P, Kuma V, Manoj K, Wang S. Fungal nano bionics: principles and applications. Springer: Berlin, 2018.

Karak N. Nanomaterials and polymer nanocomposites: applications. Elsevier: Amsterdam, 2018.

Uma S, Singh P. Molecular methods in plant pathology, CRC Press: Florida, 2017.

Herbert P. Cementitious Materials: composition, properties, and application. Walter de Gruyter GmbH& CoKG: Berlin, 2017.

John C, Myhra S. Handbook of surface ad interface analysis: methods for problem-solving. 2nd edition, CRC Press: Florida, 2009.

Ukoba O, Eloka E, Inambao, F. Influence of concentration on properties of spray deposited nickel oxide films for solar cells. Energy Proc. 2017; 142: 236-243.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Ho Soonmin