Abstract
The present perspective focuses on fundamental and applied attributes of antisolvent crystallization (ASC) in aqueous systems and establishes its potential for various industrial applications. In the ASC method, supersaturation is attained by adding a secondary solvent (antisolvent) to a solution leading to the crystallization of the solute. ASC offers the advantages of increasing yields, and conserving energy over the conventional evaporative or cooling crystallization, and thus appears to be a growing industrially important and sustainable process. The insights on the role of phase equilibrium thermodynamics and kinetics in controlling the crystallization process and crystal properties during ASC are discussed. The choice of solvents is a critical factor in ASC, and the solvent type, properties, and selection are considered briefly. The evaluation of the sustainability aspect of ASC by assessing the environmental benignity of solvents, the impact of their life cycles on the ecology, and associated economic costs are presented. A comprehensive list of solvents used for ASC and their usage pattern is also included. Successively reintegrating ASC into process design and developing different process configurations (stand-alone and hybrid) are reviewed. Finally, the paper highlights the opportunity for more widespread application of ASC in the fields of salt extraction, water treatment, hydrometallurgy, bioprocessing, and the pharmaceutical industry.
References
Ulrich J. Crystallization. Kirk‐Othmer Encyclopedia of Chemical Technology, 2002. https://doi.org/10.1002/0471238961.0318251918152119.a01.pub2
Zhou X, Shan J, Chen D, Li H. Tuning the crystal habits of organic explosives by antisolvent crystallization: the case study of 2,6-dimaino-3,5-dinitropyrazine-1-oxid (LLM-105). Crystals. 2019; 9(8): 392. https://doi.org/10.3390/cryst9080392
Karunanithi AT, Achenie LEK, Gani R. A computer-aided molecular design framework for crystallization solvent design. Chem Eng Sci. 2006; 61: 1247-60. https://doi.org/10.1016/j.ces.2005.08.031
McDonald MA, Salami H, Harris PR, Lagerman CE, Yang X, Bommarius AS, et al. Rousseau, Reactive crystallization: a review. React Chem Eng. 2021; 6: 364-400. https://doi.org/10.1039/D0RE00272K
Westphal G, Kristen G, Wegener W, Ambatiello P, Geyer H, Epron B, et al. Sodium Chloride. Ullmann’s Encycl Ind Chem. 2012; 319-65. https://doi.org/10.1002/14356007.a24_317.pub4
Moldoveanu GA, Demopoulos GP. Producing high-grade nickel sulfate with solvent displacement crystallization. JOM. 2002; 54: 49-53. https://doi.org/10.1007/BF02822606
Tavare NS. Crystallization techniques and phenomena bt - industrial crystallization: process simulation analysis and design. In Tavare NS, Ed., US, Boston, MA: Springer; 1995, pp. 465-99. https://doi.org/10.1007/978-1-4899-0233-7_12
Lombard J, Smith VJ, le Roex T, Haynes DA. Crystallisation of organic salts by sublimation: salt formation from the gas phase. CrystEngComm. 2020; 22: 7826-31. https://doi.org/10.1039/D0CE01470B
Volkwyn AL, Haynes DA. Crystallization of organic salts and co-crystals by sublimation: the effect of experimental conditions. Cryst Growth Des. 2023; 23: 8212-20. https://doi.org/10.1021/acs.cgd.3c00931
Takiyama H, Otsuhata T, Matsuoka M. Morphology of NaCl crystals in drowning-out precipitation operation. Chem Eng Res Des. 1998; 76: 809-14. https://doi.org/10.1205/026387698525559
Mydlarz J, Jones AG. Solubility and density isotherms for magnesium sulfate heptahydrate-water-ethanol. J Chem Eng Data. 1991; 36: 119-21. https://doi.org/10.1021/je00001a034
Moldoveanu GA, Demopoulos GP. Organic solvent-assisted crystallization of inorganic salts from acidic media. J Chem Technol Biotechnol. 2015; 90: 686-92. https://doi.org/10.1002/jctb.4355
Mayer MJJ. Processes involving the use of antisolvent crystallization. US patent US20060150892A1, 2006.
Burant A, Lowry GV, Karamalidis AK. Measurement and modeling of setschenow constants for selected hydrophilic compounds in NaCl and CaCl2 simulated carbon storage brines, Acc Chem Res. 2017; 50: 1332-41. https://doi.org/10.1021/acs.accounts.6b00567
Thorson MR, Goyal S, Gong Y, Zhang GGZ, Kenis PJA. Microfluidic approach to polymorph screening through antisolvent crystallization. CrystEngComm. 2012; 14: 2404-12. https://doi.org/10.1039/C2CE06167H
Jia S, Yang P, Gao Z, Li Z, Fang C, Gong J. Recent progress in antisolvent crystallization. CrystEngComm. 2022; 24: 3122-35. https://doi.org/10.1039/D2CE00059H
Doki N, Kubota N, Yokota M, Kimura S, Sasaki S. Production of sodium chloride crystals of uni-modal size distribution by batch dilution crystallization. J Chem Eng Jpn. 2002; 35: 1099-104. https://doi.org/10.1252/jcej.35.1099
McNally JS, Foo ZH, Deshmukh A, Orme CJ, Lienhard JH, Wilson AD. Solute displacement in the aqueous phase of water–NaCl–organic ternary mixtures relevant to solvent-driven water treatment. RSC Adv. 2020; 10: 29516-27. https://doi.org/10.1039/D0RA06361D
Bhatti S, Sahu P, Masani HR, Dinesh AK, Upadhyay SC, Vyas BG, et al. Process integration and techno-economic assessment of crystallization techniques for Na2SO4 and NaCl recovery from saline effluents Chem Eng Process. 2024; 203: 109879. https://doi.org/10.1016/j.cep.2024.109879
Kaneko S, Yamagami Y, Tochihara H, Hirasawa I. Effect of supersaturation on crystal size and number of crystals produced in antisolvent crystallization. J Chem Eng Jpn. 2002; 35: 1219-23. https://doi.org/10.1252/jcej.35.1219
Peeters D. Hydrogen bonds in small water clusters: A theoretical point of view. J Mol Liq. 1995; 67: 49-61. https://doi.org/10.1016/0167-7322(95)00865-9
Govind R, Foster R. Systems, apparatus, and methods for separating salts from water. US patent US20140158616A1, December 6, 2014.
Karunanithi A, Achenie L. Solvent design for crystallization of pharmaceutical products. Comput Aided Chem Eng. 2007; 23: 115-47. https://doi.org/10.1016/S1570-7946(07)80007-1
McGinty J, Chong MWS, Manson A, Brown CJ, Nordon A, Sefcik J. Effect of process conditions on particle size and shape in continuous antisolvent crystallisation of lovastatin. Crystals. 2020; 10: 925. https://doi.org/10.3390/cryst10100925
Feng ZY, Li QS, Song YH, Sun XT, Sun LY. Recovery of petroleum sulfonate from wastewater by extractive crystallization. Adv Mater Res. 2012; 524-527: 1852-5. https://doi.org/10.4028/www.scientific.net/amr.524-527.1852
Shabani A, Hoseinpur A, Yoozbashizadeh H, Vahdati Khaki J. As, Sb, and Fe removal from industrial copper electrolyte by solvent displacement crystallisation technique. Can Metall. 2019; 58: 253-61. https://doi.org/10.1080/00084433.2018.1549346
Lozano JAF. Recovery of potassium magnesium sulfate double salt from seawater bittern. Ind Eng Chem Process Des Dev. 1976; 15: 445-9. https://doi.org/10.1021/i260059a018
Kokes H, Morcali MH, Acma E. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process. Eng Sci Technol. 2014; 17: 39-44. https://doi.org/10.1016/j.jestch.2014.03.002
Oosterhof H, Witkamp G-J, van Rosmalen GM. Antisolvent crystallization of anhydrous sodium carbonate at atmospherical conditions. AIChE J. 2001; 47: 602-8. https://doi.org/10.1002/aic.690470310
McGarvey PW, Hoffmann MM. Solubility of some mineral salts in polyethylene glycol and related surfactants, Tenside Surfactants Deterg. 2018; 55: 203-9. https://doi.org/10.3139/113.110555
Hyde AM, Zultanski SL, Waldman JH, Zhong Y-L, Shevlin M, Peng F. General principles and strategies for salting-out informed by the hofmeister series. Org Process Res Dev. 2017; 21: 1355-70. https://doi.org/10.1021/acs.oprd.7b00197
Moldoveanu GA. Crystallization of inorganic compounds with alcohols. Thesis, McGill University; 2005. Available from: https://escholarship.mcgill.ca/concern/theses/jm214p530
Miller JM, Rodríguez-Hornedo N, Blackburn AC, Macikenas D, Collman BM. Solvent systems for crystallization and polymorph selection. In: Augustijns P, Brewster ME, Eds., Solvent systems and their selection in pharmaceutics and biopharmaceutics. biotechnology: pharmaceutical aspects. vol VI. New York: Springer; 2007, pp. 53-109. https://doi.org/10.1007/978-0-387-69154-1_3
Zhang X, Yin Q, Cui P, Liu Z, Gong J. Correlation of solubilities of hydrophilic pharmaceuticals versus dielectric constants of binary solvents. Ind Eng Chem Res. 2012; 51: 6933-8. https://doi.org/10.1021/ie202624d
Rajagopal S, Ng KM, Douglas JM. Design and economic trade-offs of extractive crystallization processes. AIChE J. 1991; 37: 437-47. https://doi.org/10.1002/aic.690370313
McNaney JA, Zimmerman FM, Zimmerman HK. Influence of solvent polarity upon salt solubilities, II: Solubilities of two potassium carboxylates at 85°C in aqueous 1,4-dioxane. Monatshefte Für Chemie / Chem Mon. 1984; 115: 1039-45. https://doi.org/10.1007/BF00798770
McNaney JA, Zimmerman FM, Zimmerman HK. Influence of solvent polarity upon salt solubilities, III: Solubilities of KCl in water/tetrahydrofuran at 25°C. Monatshefte Für Chemie / Chem Mon. 1986; 117: 1-6. https://doi.org/10.1007/BF00809166
Kolker A, de Pablo J. Thermodynamic modeling of the solubility of salts in mixed aqueous−organic solvents. Ind Eng Chem Res. 1996; 35: 228-33. https://doi.org/10.1021/ie9406207
Olaya MM, Marcilla A, Serrano MD, Botella A, Reyes-Labarta JA. Simultaneous correlation of liquid−liquid, liquid−solid, and liquid−liquid−solid equilibrium data for water + organic solvent + salt ternary systems. Anhydrous Solid Phase. Ind Eng Chem Res. 2007; 46: 7030-7037. https://doi.org/10.1021/ie0705610
Jimenez YP, Taboada ME, Galleguillos HR. Solid–liquid equilibrium of K2SO4 in solvent mixtures at different temperatures. Fluid Phase Equilib. 2009; 284: 114-117. https://doi.org/10.1016/J.FLUID.2009.06.017
Li M, Constantinescu D, Wang L, Mohs A, Gmehling J. Solubilities of NaCl, KCl, LiCl, and LiBr in methanol, ethanol, acetone, and mixed solvents and correlation using the LIQUAC model. Ind Eng Chem Res. 2010; 49: 4981-8. https://doi.org/10.1021/ie100027c
Lovera JA, Padilla AP, Galleguillos HR. Correlation of the solubilities of alkali chlorides in mixed solvents: Polyethylene glycol+H2O and Ethanol+H2O. Calphad. 2012; 38: 35-42. https://doi.org/10.1016/j.calphad.2012.03.002
Kan AT, Fu G, Tomson MB. Effect of methanol and ethylene glycol on sulfates and halite scale formation. Ind Eng Chem Res. 2003; 42: 2399-408. https://doi.org/10.1021/ie020724e
Hernández-Luis F, Rodríguez-Raposo R, Galleguillos HR, Morales JW. Solubility of sodium halides in aqueous mixtures with ε-increasing cosolvents: formamide, N-methylformamide, and N-methylacetamide at 298.15 K. Ind Eng Chem Res. 2016; 55: 812-9. https://doi.org/10.1021/acs.iecr.5b04614
Aktas S, Gürcan H, Keskin A, Hakan Morcali M, Özbey S, Yücel O. Investigation of cobalt sulfate precipitation by alcohol and influencing factors, Mining, Metall. Explor. 2013; 30: 174-9. https://doi.org/10.1007/BF03402265
Gomis V, Ruiz F, Boluda N, Saquete MD. Liquid−liquid−solid equilibria for ternary systems water + sodium chloride + pentanols. J Chem Eng Data. 1999; 44: 918-20. https://doi.org/10.1021/je990071h
Schall JM, Capellades G, Myerson AS. Methods for estimating supersaturation in antisolvent crystallization systems. CrystEngComm. 2019; 21: 5811-7. https://doi.org/10.1039/C9CE00843H
Mohammad S, Grundl G, Müller R, Kunz W, Sadowski G, Held C. Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol, Fluid Phase Equilib. 2016; 428: 102-111. https://doi.org/10.1016/j.fluid.2016.05.001
Sahu P, Gao B, Bhatti S, Capellades G, Yenkie KM. Process design framework for inorganic salt recovery using antisolvent crystallization (ASC). ACS Sustain Chem Eng. 2024; 12: 154-65. https://doi.org/10.1021/acssuschemeng.3c05243
Kitayama A, Kadota K, Tozuka Y, Shimosaka A, Yoshida M, Shirakawa Y. Molecular aspects of glycine clustering and phase separation in an aqueous solution during anti-solvent crystallization. CrystEngComm. 2020; 22: 5182-90. https://doi.org/10.1039/D0CE00542H
Mydlarz J, Jones AG. Crystallization and agglomeration kinetics during the batch drowning-out precipitation of potash alum with aqueous acetone. Powder Technol. 1991; 65: 187-94. https://doi.org/10.1016/0032-5910(91)80181-H
Pirrung MC. Purification of Products. In Smith MB Ed., Handbook of Synthetic Organic Chemistry. Academic Press; 2017, pp. 151-64.
Kalikmanov V. Nucleation Theory, 2013. https://doi.org/10.1007/978-90-481-3643-8
Barata PA, Serrano ML. Salting-out precipitation of potassium dihydrogen phosphate (KDP). I. Precipitation mechanism. J Cryst Growth. 1996; 160: 361-9. https://doi.org/10.1016/0022-0248(95)00740-7
O’Grady D. Barrett M, Casey E, Glennon B. The effect of mixing on the metastable zone width and nucleation kinetics in the anti-solvent crystallization of benzoic acid. Chem Eng Res Des. 2007; 85: 945-52. https://doi.org/10.1205/cherd06207
Sangwal K. Antisolvent crystallization and the metastable zone width. In: Nucleation cryst. Growth Metastability Solutions and Melts. Wiley; 2018: pp. 267-324. https://doi.org/10.1002/9781119461616.ch6
Pina CM, Fernández-Dı́az L, Prieto M, Veintemillas-Verdaguer S. Metastability in drowning-out crystallisation: precipitation of highly soluble sulphates, J Cryst Growth. 2001; 222: 317-27. https://doi.org/10.1016/S0022-0248(00)00937-4
Tóth J, Kardos-Fodor A, Halász-Péterfi S. The formation of fine particles by salting-out precipitation, Chem Eng Process. 2005; 44: 193-200. https://doi.org/10.1016/j.cep.2004.02.013
Mostafa Nowee S, Abbas A, Romagnoli JA. Antisolvent crystallization: Model identification, experimental validation and dynamic simulation. Chem Eng Sci. 2008; 63: 5457-67. https://doi.org/10.1016/j.ces.2008.08.003
Barata PA, Serrano ML. Salting-out precipitation of potassium dihydrogen phosphate (KDP) II. Influence of agitation intensity. J Cryst Growth. 1996; 163: 426-33. https://doi.org/10.1016/0022-0248(95)00987-6
Barata PA, Serrano ML. Salting-out precipitation of potassium dihydrogen phosphate (KDP): III. Growth process. J Cryst Growth. 1998; 194: 101-8. https://doi.org/10.1016/S0022-0248(98)00655-1
Barata PA, Serrano ML. Salting-out precipitation of potassium dihydrogen phosphate (KDP): IV. Characterisation of the final product. J Cryst Growth. 1998; 194: 109-18. https://doi.org/10.1016/S0022-0248(98)00656-3
Budz J, Karpinski PH, Mydlarz J, Nyvlt J. Salting-out precipitation of cocarboxylase hydrochloride from aqueous solution by addition of acetone. Ind Eng Chem Prod Res Dev. 1986; 25: 657-64. https://doi.org/10.1021/i300024a017
Lacmann R. Crystallization, third edition. j. w. mullin, butterworth-heinemann, oxford 1997, 527 seiten, zahlr. abb. und isbn 0-7506-3759-5. Chemie Ing Tech. 1998; 70: 1468. https://doi.org/10.1002/cite.330701126
Oosterhof H, Geertman RM, Witkamp GJ, van Rosmalen GM. The growth of sodium nitrate from mixtures of water and isopropoxyethanol. J Cryst Growth. 1999; 198-199: 754-9. https://doi.org/10.1016/S0022-0248(98)01156-7
Granberg RA, Bloch DG, Rasmuson ÅC. Crystallization of paracetamol in acetone–water mixtures. J Cryst Growth. 1999; 198-199: 1287-93. https://doi.org/10.1016/S0022-0248(98)01013-6
Barrett M, O’Grady D, Casey E, Glennon B. The role of meso-mixing in anti-solvent crystallization processes. Chem Eng Sci. 2011; 66: 2523-34. https://doi.org/10.1016/j.ces.2011.02.042
Tung H-H. Industrial Perspectives of pharmaceutical crystallization. Org Process Res Dev. 2013; 17: 445-54. https://doi.org/10.1021/op3002323
Marcus Y. Solubility and solvation in mixed solvent systems. Pure Appl Chem. 1990; 62: 2069-76. https://doi.org/doi:10.1351/pac199062112069
Lonare SR, Patel AA. Antisolvent crystallization of poorly water soluble drugs. Int J Chem Eng Appl. 2013; 4: 337-41. https://doi.org/10.7763/IJCEA.2013.V4.321
Mahdavi M, Mahvi AH, Nasseri S, Yunesian M. Application of freezing to the desalination of saline water. Arab J Sci Eng. 2011; 36: 1171-7.
Frank TC, Downey JR, Gupta SK. Quickly screen solvents for organic solids. Chem Eng Prog. 1999; 95: 41-61.
Yu Z-Q, Tan RB. Anti-solvent crystallization. Crystals. 2020; 10: 748. https://doi.org/10.3390/cryst10090748
Konstantakou M, Perganti D, Falaras P, Stergiopoulos T. Anti-solvent crystallization strategies for highly efficient perovskite solar cells. Crystals. 2017; 7: 291. https://doi.org/10.3390/cryst7100291
Zijlema TG, Geertman RM, Witkamp G-J, van Rosmalen GM, de Graauw J. Antisolvent Crystallization as an Alternative to Evaporative Crystallization for the Production of Sodium Chloride. Ind Eng Chem Res. 2000; 39: 1330-7. https://doi.org/10.1021/ie990221h
McCabe W, Smith J, Harriott P. Unit operations of chemical engineering, 6th ed. Boston: McGraw Hill; 2001.
Weingaertner DA, Lynn S, Hanson DN. Extractive crystallization of salts from concentrated aqueous solution. Ind Eng Chem Res. 1991; 30: 490-501. https://doi.org/10.1021/ie00051a009
Hanson DN, Lynn S. Method of crystallizing salts from aqueous solutions. US patent US4879042A, 1989
Berry DA, Dye SR, Ng KM. Synthesis of drowning-out crystallization-based separations. AIChE J. 1997; 43: 91-103. https://doi.org/10.1002/aic.690430112
Taboada ME, Cisternas LA, Cheng YS, Ng KM. Design of alternative purification processes for potassium sulfate. Ind Eng Chem Res. 2005; 44: 5845-51. https://doi.org/10.1021/ie0503390
Chea JD, Lehr AL, Stengel JP, Savelski MJ, Slater CS, Yenkie KM. Evaluation of solvent recovery options for economic feasibility through a superstructure-based optimization framework. Ind Eng Chem Res. 2020; 59: 5931-44. https://doi.org/10.1021/acs.iecr.9b06725
Sinha M, Achenie LEK, Ostrovsky GM. Environmentally benign solvent design by global optimization, Comput Chem Eng. 1999; 23: 1381-94. https://doi.org/10.1016/S0098-1354(99)00299-9
Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, et al. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016; 18: 288-296. https://doi.org/10.1039/C5GC01008J
Duereh A, Sato Y, Smith RL, Inomata H. Methodology for replacing dipolar aprotic solvents used in api processing with safe hydrogen-bond donor and acceptor solvent-pair mixtures. Org Process Res Dev. 2017; 21: 114-24. https://doi.org/10.1021/acs.oprd.6b00401
Li Z, Smith KH, Stevens GW. The use of environmentally sustainable bio-derived solvents in solvent extraction applications—A review. Chinese J Chem Eng. 2016; 24: 215-20. https://doi.org/10.1016/j.cjche.2015.07.021
Alfassi ZB, Mosseri S. Solventing out of electrolytes from their aqueous solution. AIChE J. 1984; 30: 874-76. https://doi.org/10.1002/aic.690300539
Aktas S, Fray DJ, Burheim O, Fenstad J, Açma E. Recovery of metallic values from spent Li ion secondary batteries. Miner Process Extr Metall. 2006; 115: 95-100. https://doi.org/10.1179/174328506X109040
Aktas S. A novel purification method for copper sulfate using ethanol. Hydrometallurgy. 2011; 106: 175-8. https://doi.org/10.1016/j.hydromet.2011.01.001
Zhang Y, Zheng S, Du H, Wang S, Peng Y, Zhang Y. Alumina recovery from spent Bayer liquor by methanol. Trans Nonferrous Met Soc China. 2010; 20: s165-s168. https://doi.org/10.1016/S1003-6326(10)60033-7
Zhang Y, Zheng S, Du H, Xu H, Wang S, Zhang Y. Improved precipitation of gibbsite from sodium aluminate solution by adding methanol. Hydrometallurgy. 2009; 98: 38-44. https://doi.org/10.1016/j.hydromet.2009.03.014
Wang F, He F, Zhao J, Sui N, Xu L, Liu H. Extraction and separation of cobalt(II), copper(II; and manganese(II; by Cyanex272, PC-88A and their mixtures. Sep Purif Technol. 2012; 93: 8-14. https://doi.org/10.1016/j.seppur.2012.03.018
Jana RK, Singh DDN, Roy SK. Alcohol-modified hydrochloric acid leaching of sea nodules, Hydrometallurgy. 1995; 38: 289-98. https://doi.org/10.1016/0304-386X(94)00069-F
Le TM, Pham PTH, Hoang ND. A double salt formation from seawater bittern and ammonium sulfate. J Chem Eng Res Updat. 2022; 9: 30-8. https://doi.org/10.15377/2409-983X.2022.09.4
Sahu P. Clathrate hydrate technology for water reclamation: Present status and future prospects. J Water Process Eng. 2021; 41: 102058. 102058.https://doi.org/10.1016/j.jwpe.2021.102058
Alfassi ZB. The Separation of electrolytes in aqueous solution by miscible organic solvents. Sep Sci Technol. 1979; 14: 155-61. https://doi.org/10.1080/01496397908062552
Mosseri S, Alfassi ZB. Separation of the KX-KXO3-KXO4 (X = Cl, Br, I) System by “Solventing-Out” Processes. Sep Sci Technol. 1983; 18: 165-75. https://doi.org/10.1080/01496398308055666
Mosseri S, Alfassi ZB. The measurement of the solubility of electrolytes in water—miscible organic solvent mixture by using the “solventing out” process. Chem Eng Sci. 1985; 40: 1695-701. https://doi.org/10.1016/0009-2509(85)80030-0
Govind R, Foster R. Dissolved air flotation, antisolvent crystallisation and membrane separation for separating buoyant materials and salts from water. US patent WO2014089443A1, December 6, 2014.
Digarse H, Sarkar D. Production of the metastable δ-polymorphic form of pyrazinamide by isothermal internal seeding anti-solvent crystallization. J Cryst Growth. 2019; 526: 125245. https://doi.org/10.1016/j.jcrysgro.2019.125245
Zhang Y, Jiang Y, Zhang D, Qian Y, Wang XZ. Metastable zone width, crystal nucleation and growth kinetics measurement in anti-solvent crystallization of β-artemether in the mixture of ethanol and water. Chem Eng Res Des. 2015; 95: 187-94. https://doi.org/10.1016/j.cherd.2014.10.018
Holaň J, Skořepová E, Heraud L, Baltes D, Rohlíček J, Dammer O, et al. Polymorphic Crystallization and structural aspects of agomelatine metastable form X prepared by combined antisolvent/cooling process. Org Process Res Dev. 2016; 20: 33-43. https://doi.org/10.1021/acs.oprd.5b00241
Kumar R, Thakur AK, Chaudhari P, Banerjee N. Particle size reduction techniques of pharmaceutical compounds for the enhancement of their dissolution rate and bioavailability. J Pharm Innov. 2022; 17: 333-52. https://doi.org/10.1007/s12247-020-09530-5
Kirwan DJ, Orella CJ. Crystallization in the pharmaceutical and bioprocessing industries. In: Myerson AS, Ed., Butterworth-Heinemann, Woburn; 2002, pp. 249-66. https://doi.org/10.1016/B978-075067012-8/50013-6
Gerstweiler L, Bi J, Middelberg APJ. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci. 2021; 231: 116272. https://doi.org/10.1016/j.ces.2020.116272
Marques JEJr., Rocha MVP. Development of a purification process via crystallization of xylitol produced for bioprocess using a hemicellulosic hydrolysate from the cashew apple bagasse as feedstock. Bioprocess Biosyst Eng. 2021; 44: 713-25. https://doi.org/10.1007/s00449-020-02480-9
Guajardo N, Schrebler RA. Upstream and downstream bioprocessing in enzyme technology. Pharmaceutics. 2024; 16(1): 38. https://doi.org/10.3390/pharmaceutics16010038
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Sameer Bhatti, Parul Sahu