Abstract
The feasibility of integrating a solid oxide fuel cell (SOFC) technology into the Cuban energy sector is analyzed. In this context, two scenarios for power generation are assessed: the first (existing) combines a bagasse cogeneration unit and diesel combustion engines and for the second (future), diesel engines are replaced by a SOFC feed with ethanol and integrated into the sugar factory. The environmental impact (greenhouse gases), exergy efficiency, and a renewability parameter are considered as indicators for the assessment of the studied scenarios through a multifunctional unit (9.86t/h sugar, 2.195t/h of hydrated ethanol (96% w/w) and 847kWh of electricity) approach. The SOFC scenario shows significant advantages from an environmental point of view, obtaining a reduction of 55% greenhouse emissions and 60% fossil fuel consumption. At the same time, the overall process efficiency (38%) and renewability index (0.93) are higher than for the existing scenario. Furthermore, health impacts and their corresponding external cost related to airborne emissions (primary and secondary pollutant) are estimated applying the Uniform World Model (UWM). In this sense, the results show that the use of a SOFC technology involves a reduction of health impacts in 25.76 YOLL yr-1 (12%) and external costs of 52175 US$ yr-1 (12%). The potentiality of SOFC technology implementation into Cuban energy sector is assessed using a Strengths, Weaknesses, Opportunities and Threats (SWOT) approach. Nowadays, the main threat of implementation of this technology is associated to competitive energy market.
References
Tsiakaras P, Demin A. Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol, Journal of Power Sources 2001; 102: 210-217. http://dx.doi.org/10.1016/S0378-7753(01)00803-5
Cimenti M, Hill JM. Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions. Journal of Power Sources 2009; 186: 377-384. http://dx.doi.org/10.1016/j.jpowsour.2008.10.043
Arteaga-Perez LE, Casas Y, Peralta LM, Kafarov V, Dewulf J, Giunta P, et al. An auto-sustainable solid oxide fuel cell system fueled by bio-ethanol. Process simulation and heat exchanger network synthesis. Chemical Engineering Journal 2009; 150: 242-251. http://dx.doi.org/10.1016/j.cej.2009.02.032
Casas Y, Arteaga LE, Morales M, Rosa E, Peralta LM, Dewulf J, et al. Energy and exergy analysis of an ethanol fueled solid oxide fuel cell power plant, Chemical Engineering Journal 2010; 162: 1057-1066. http://dx.doi.org/10.1016/j.cej.2010.06.021
Arteaga-Pérez LE, Casas-Ledón Y, Prins W, Radovic L. Thermodynamic predictions of performance of a bagasse integrated gasification combined cycle under quasiequilibrium conditions. Chemical Engineering Journal 2014; 258: 402-411. http://dx.doi.org/10.1016/j.cej.2014.07.104
Calise F, Palombo a, Vanoli L. Design and partial load exergy analysis of hybrid SOFC–GT power plant. Journal of Power Sources 2006; 158: 225-244. http://dx.doi.org/10.1016/j.jpowsour.2005.07.088
Strazza C, Del Borghi a, Costamagna P, Traverso a, Santin M. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Applied Energy 2010; 87: 1670-1678. http://dx.doi.org/10.1016/j.apenergy.2009.10.012
Meyer L, Castillo R, Buchgeister J and Tsatsaronis G. Application of exergoeconomic and exergoenvironmental analysis to an SOFC system with an allothermal biomass gasifier. International Journal of Thermodynamics 2009; 12: 177-186.
Ometto AR and Roma WNL. Atmospheric impacts of the life cycle emissions of fuel ethanol in Brazil: based on chemical exergy. Journal of Cleaner Production 2010; 18: 71-76. http://dx.doi.org/10.1016/j.jclepro.2009.09.003
Gopal AR and Kammen DM. Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol, Environmental Research Letters 2009; 4: 044005. http://dx.doi.org/10.1088/1748-9326/4/4/044005
Contreras AM, Rosa E, Pérez M, Van Langenhove H, Dewulf J. Comparative Life Cycle Assessment of four alternatives for using by-products of cane sugar production. Journal of Cleaner Production 2009; 17: 772-779. http://dx.doi.org/10.1016/j.jclepro.2008.12.001
Moya C, Domínguez R, Van Langenhove H, Herrero S, Gil P, Ledón C, et al. Exergetic analysis in cane sugar production in combination with Life Cycle Assessment. Journal of Cleaner Production 2013; 59: 43-50. http://dx.doi.org/10.1016/j.jclepro.2013.06.028
Pérez Gil M, Contreras Moya AM and Rosa Domínguez E. Life cycle assessment of the cogeneration processes in the Cuban sugar industry. Journal of Cleaner Production 2013; 41: 222-231. http://dx.doi.org/10.1016/j.jclepro.2012.08.006
Casas Y, Dewulf J, Arteaga-Pérez LE, Morales M, Van Langenhove H and Rosa E. Integration of Solid Oxide Fuel Cell in a sugar-ethanol factory: Analysis of the efficiency and the environmental profile of the products. Journal of Cleaner Production 2011; 19: 1395-1404. http://dx.doi.org/10.1016/j.jclepro.2011.04.018
Casas-Ledon Y, Arteaga-Perez LE, Dewulf J, Morales MC, Rosa E, Peralta-Suáreza LM, et al. Health external costs associated to the integration of solid oxide fuel cell in a sugar-ethanol factory. Applied Energy 2014; 113: 12831292. http://dx.doi.org/10.1016/j.apenergy.2013.08.090
FAO, No Title, (2006). www.fao.org, http://faostat.fao.org/faostat/collections.
Aboudheir a, Akande a, Idem R, Dalai a, Stambouli aB, Traversa E, et al. The Electric Power Sector in Cuba : Potential Ways to Increase Efficiency and Sustainability. International Journal of Hydrogen Energy 2007; 34: 869-85.
Pérez D, López I and Berdellans I. Evaluation of energy policy in Cuba using ISED. Natural Resources Forum 2005; 29: 298-307. http://dx.doi.org/10.1111/j.1477-8947.2005.00142.x
ONE, No Title, Oficina Nacional de Estadistica de Cuba. (2010). Also available at HTTP http://www.one.cu.
Ramjeawon T. Life cycle assessment of electricity generation from bagasse in Mauritius. Journal of Cleaner Production 2008; 16: 1727-1734. http://dx.doi.org/10.1016/j.jclepro.2007.11.001
Vaidya PD, Rodrigues AE, Alonso-Pippo W, Luengo Ca, Koehlinger J, Garzone P, et al. A report on the International Seminar on Energy and the Sugarcane Industry held in Havana, Cuba. Energy for Sustainable Development 2001; 5: 7-9. http://dx.doi.org/10.1016/S0973-0826(09)60014-4
Dodić ZZ, Popov SN, Dodić SD, Ranković JM, and Zavargo JA. No TitlePotential contribution of bioethanol fuel to the transport sector of Vojvodina. Renewable and Sustainable Energy Reviews 2009; 13: 2197-2200. http://dx.doi.org/10.1016/j.rser.2009.01.005
Douvartzides SL, Coutelieris Fa and Tsiakaras PE. On the systematic optimization of ethanol fed SOFC-based electricity generating systems in terms of energy and exergy. Journal of Power Sources 2003; 114: 203-212. http://dx.doi.org/10.1016/S0378-7753(02)00611-0
Dias Oliveira EJ, Vaughan ME, and Rykiel BE. No TitleEthanol as Fuel: Energy, Carbon Dioxide Balances and Ecological Footprint BioScience 2005; 55: 593-602.
Larson ED, Williams RH and V Leal MRL. A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba. Energy for Sustainable Development 2001; 5: 54-76. http://dx.doi.org/10.1016/S0973-0826(09)60021-1
Hernández L, Kafarov V, Aboudheir a, Akande a, Idem R, Dalai a, et al. The Electric Power Sector in Cuba : Potential Ways to Increase Efficiency and Sustainability. International Journal of Hydrogen Energy 2007; 34: 869-85.
Ensinas AV, Nebra Sa, Lozano Ma and Serra LM. Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane. Energy Conversion and Management 2007; 48: 2978-2987. http://dx.doi.org/10.1016/j.enconman.2007.06.038
Carrier H, Hugo M, Gorgens T and Knoetze J. No TitleComparison of slow and vacuum pyrolysis of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis 2011; 90: 18-23. http://dx.doi.org/10.1016/j.jaap.2010.10.001
Hamelinck APC, Van Hooijdonk CN and Faaij G. Ethanol from lignocellulosic biomass: techno-economic performance in short- middle- and long-term. Biomass and Bioenergy 2005; 28: 384-410. http://dx.doi.org/10.1016/j.biombioe.2004.09.002
Arteaga-Pérez LE, Casas-Ledón Y, Pérez-Bermúdez R, Peralta LM, Dewulf J and Prins W. Energy and exergy analysis of a sugar cane bagasse gasifier integrated to a solid oxide fuel cell based on a quasi-equilibrium approach. Chemical Engineering Journal 2013; 228: 1121-1132. http://dx.doi.org/10.1016/j.cej.2013.05.077
Leibbrandt JF, Knoetze NH and Gorgens JH. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective. Biomass and Bioenergy 2011; 35: 2117-2126. http://dx.doi.org/10.1016/j.biombioe.2011.02.017
Luo L, van der Voet E and Huppes G. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable and Sustainable Energy Reviews 2009; 13: 1613-1619. http://dx.doi.org/10.1016/j.rser.2008.09.024
Ojeda K and Kafarov V. Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol. Chemical Engineering Journal 2009; 154: 390-395. http://dx.doi.org/10.1016/j.cej.2009.05.032
Mesa E, Gonzales L, Romero E, Ruiz I, Cara E, and Castro C. Comparison of process configuration for ethanol production from two steps pretreated sugarcane bagasse. Chemical Engineering Journal 2011; 175: 185-191. http://dx.doi.org/10.1016/j.cej.2011.09.092
Comas J, Laborde M and Amadeo N. Catalytic behavior of Ni (II) -Al hydrotalcite like compounds in bioethanol steam reforming (n.d.) 1-2.
Douvartzides, Coutelieris and Tsiakaras. Exergy analysis of a solid oxide fuel cell power plant fed by either ethanol or methane. Journal of Power Sources 2004; 131: 224-230. http://dx.doi.org/10.1016/j.jpowsour.2003.10.015
Hernandez V and Kafarov HY. Use of bioethanol for sustainable electrical energy production. International Journal of Hydrogen Energy 2009; 34: 7041-7050. http://dx.doi.org/10.1016/j.ijhydene.2008.07.089
Dincer I and Cengel Ya. Energy entropy and exergy concepts and their roles in thermal engineering, 2001. http://dx.doi.org/10.3390/e3030116
Speight JG and Loyalka SK. Handbook of Alternative Fuel Sunggyu Lee 2007.
Otomo J, Oishi J, Mitsumori T, Iwasaki H and Yamada K. Evaluation of cost reduction potential for 1 kW class SOFC stack production: Implications for SOFC technology scenario. International Journal of Hydrogen Energy 2013; 38: 14337- 14347. http://dx.doi.org/10.1016/j.ijhydene.2013.08.110
Mazzucco A and Rokni M. Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification Energy 2014; 76: 114- 129. http://dx.doi.org/10.1016/j.energy.2014.04.035
Boudghene E and Traversa A. Solid oxide fuel cells (SOFCs): a review of an environmentally clean a deficient source of energy. Renewable and Sustainable Energy Reviews 2002; 6: 433-455. http://dx.doi.org/10.1016/S1364-0321(02)00014-X
Laosiripojana N and Assabumrungrat S. Catalytic steam reforming of methane methanol and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC. Journal of Power Sources 2007; 163: 943-951. http://dx.doi.org/10.1016/j.jpowsour.2006.10.006
Escudero L, Irvine MJ, and Daza JTS. Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC. Journal of Power Sources 2009; 192: 43-50. http://dx.doi.org/10.1016/j.jpowsour.2008.11.132
Casas Y, Dewulf J, Arteaga-Pérez LE, Morales M, Van Langenhove H and Rosa E. Integration of Solid Oxide Fuel Cell in a sugar-ethanol factory: Analysis of the efficiency and the environmental profile of the products. Journal of Cleaner Production 2011; 19: 1395-1404. http://dx.doi.org/10.1016/j.jclepro.2011.04.018
Hugot E. Handbook of cane sugar engineering 3rd ed. Elsevier Publishing Company, Amsterdam 1986.
Granovskii MA, Dincer M and Rosen I. Exergetic life cycle assessment of hydrogen production from renewable. Journal of Power Sources 2007; 167: 461-471. http://dx.doi.org/10.1016/j.jpowsour.2007.02.031
Rosen MA and Dincer I. Exergy as the confluence of energy, environment and sustainable development. Exergy International Journal 2001; 1: 1-13. http://dx.doi.org/10.1016/S1164-0235(01)00004-8
Dewulf J, Van Langenhove H, Mulder J, van den Berg MMD and van der Kooi HJ, de Swaan Arons J, et al. Illustrations towards quantifying the sustainability of technology. Green Chemistry 2000; 2: 108-114. http://dx.doi.org/10.1039/b000015i
Dewulf J, Van Langenhove H and Van De Velde B. Exergybased efficiency and renewability assessment of biofuel production. Environmental Science and Technology 2005; 39: 3878-3882. http://dx.doi.org/10.1021/es048721b
European Commission. ExternE Externalities of Energy; Methodology 2005 Update 2005.
Brode J and Wang RW. User's Guide for the Industrial Source Complex (ISC2). Dispersion Models Volumes I-III. Environmental Protection Agency.
Spadaro JV, Spadaro JV, Rabl a and Rabl a. External costs of energy: application of the externe methodology in france. Methodology 1998.
Spadaro JV. RiskPoll: A model for estimating public health and environmental impacts of air pollutionand pollution 2005.
Hainoun a, Almoustafa a and Seif Aldin M. Estimating the health damage costs of syrian electricity generation system using impact pathway approach. Energy 2010; 35: 628-638. http://dx.doi.org/10.1016/j.energy.2009.10.034
Spadaro JV. RiskPoll : An Integrated Impact Assessment Computer Tool for Estimating Health and Environmental Risks of Airborne Pollution, (n.d.).
World Bank. World Development Indicators 2010. http://dx.doi.org/10.1596/978-0-8213-8232-5
Turtós L and Meneses Ruiz E. Revisión De Metodologías Utilizadas Para La Estimación De Las Externalidades 2003.
Pegah G. Energy and exergy analysis of internal reforming solid oxide fuel cell- gas turbine hybrid system. International Journal Hydrogen Energy 2007; 32: 4591-4599. http://dx.doi.org/10.1016/j.ijhydene.2007.08.004
Colpan FCO, Yoo Y and Dincer I. Thermal Modeling and Simulation of an Integrated Solid Oxide Fuel Cell and Charcoal Gasification System. Energy 2009; 18. http://dx.doi.org/10.1002/ep.10394
Rokni M. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine. Energy 2014; 1-13. http://dx.doi.org/10.1016/j.energy.2014.01.106
Al-Sulaiman Fa, Dincer I and Hamdullahpur F. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. Journal of Power Sources 2010; 195: 2346-2354. http://dx.doi.org/10.1016/j.jpowsour.2009.10.075
Najafi B, Shirazi A, Aminyavari M, Rinaldi F and Taylor Ra. Exergetic, economic and environmental analyses and multiobjective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system. Desalination 2014; 334: 46-59. http://dx.doi.org/10.1016/j.desal.2013.11.039
Lee YD, Ahn KY and Morosuk TG. Tsatsaronis, Exergetic and exergoeconomic evaluation of a solid-oxide fuel-cellbased combined heat and power generation system. Energy Conversion and Management 2014; 85: 154-164. http://dx.doi.org/10.1016/j.enconman.2014.05.066
Janghathaikul S and Gheewala D. Bagasse - A Sustainable Energy Resource from Sugar Mills, Asian Journal Energy and Environment 2006; 7: 356-366.
EPA, Emission Factor Documentation for AP-42 Section 1.8. Bagasse Combustion in Sugar Mills 1997.
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.