Thermal Conductivity of Aqueous Solvents Used in CO2 Capture
PDF

Keywords

Thermal conductivity
amine solution
CO2 capture
concentration

How to Cite

1.
Nayef Ghasem, Nihmiya Abdul Rahim, Mohamed Al-Marzouqi. Thermal Conductivity of Aqueous Solvents Used in CO2 Capture. J. Chem. Eng. Res. Updates. [Internet]. 2016 Jul. 31 [cited 2025 Mar. 12];3(1):25-30. Available from: https://avantipublisher.com/index.php/jceru/article/view/884

Abstract

The growing CO2 concentration in the atmosphere forces researchers to work on improving existing carbon dioxide capture technologies. This technology is energy-intensive and consumes significant amount of heat for solvent regeneration. Thermal conductivity is a key property for the estimation of the heat required for solvents regeneration. Accordingly, in the present work thermal conductivity is measured for six aqueous solvent used for this purpose; monoethanolamine (MEA), diethanolamine (DEA), 2-amino-2methyl-1-propanol (AMP), sodium hydroxide (NaOH), potassium carbonate (K2CO3), and potassium glycinate (PG) aqueous solutions for mole fraction range from 0.00 to 0.0825. The measurements were carried out at constant temperature (294.82K) and pressure (102.02kPa). The total experimental standard uncertainty of thermal conductivity, pressure, temperature, and mole fraction measurements were estimated to be ± 0.001 Wm-1K-1, ± 0.02kPa, ± 0.1K, and ± 0.0002, respectively. The measured values of thermal conductivity were compared with data and correlations reported in the literature. The average absolute deviation between measured and calculated values from available correlation equations for the thermal conductivity was lease than 0.5%.

https://doi.org/10.15377/2409-983X.2016.03.01.2
PDF

References

Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, et al. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 2008; 20(1): 14-27. http://dx.doi.org/10.1016/S1001-0742(08)60002-9

Yu CH, Huang CH and Tan CS. A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research 2012; 12(5): 745-769. http://dx.doi.org/10.4209/aaqr.2012.05.0132

Yeon SH, Lee KS, Sea B, Park YI and Lee KH. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. Journal of Membrane Science 2005; 257(1): 156-160. http://dx.doi.org/10.1016/j.memsci.2004.08.037

Rahim NA, Ghasem N and Al-Marzouqi M. Stripping of CO2 from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering 2014; 21: 886-893. http://dx.doi.org/10.1016/j.jngse.2014.10.016

Maham Y, Lebrette L and Mather AE. Viscosities and excess properties of aqueous solutions of mono-and diethylethanolamines at temperatures between 298.15 and 353.15 K. Journal of Chemical and Engineering Data 2002; 47(3): 550-553. http://dx.doi.org/10.1021/je015528d

Hsu CH and Li MH. Viscosities of aqueous blended amines. Journal of Chemical and Engineering Data 1997; 42(4): 714-720. http://dx.doi.org/10.1021/je970029r

Li H, Wilhelmsen P, Lv Y, Wang W, Yan J. Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: Review of experimental data and theoretical models. International Journal of Greenhouse Gas Control 2011; 5(5): 1119-1139. http://dx.doi.org/10.1016/j.ijggc.2011.07.009

Fu D, Li Z and Liu F. Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution. The Journal of Chemical Thermodynamics 2014; 68(0): 20-24. http://dx.doi.org/10.1016/j.jct.2013.08.025

Weiland RH, et al. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. Journal of Chemical and Engineering Data 1998; 43(3): 378-382. http://dx.doi.org/10.1021/je9702044

Park JY, et al. Density, Viscosity, and Solubility of CO2 in Aqueous Solutions of 2-Amino-2-hydroxymethyl-1, 3- propanediol. Journal of Chemical and Engineering Data 2002; 47(4): 970-973. http://dx.doi.org/10.1021/je0200012

Rebolledo-Libreros ME and Trejo A. Density and Viscosity of Aqueous Blends of Three Alkanolamines: NMethyldiethanolamine, Diethanolamine, and 2-Amino-2- methyl-1-propanol in the Range of (303 to 343) K. Journal of Chemical and Engineering Data 2006; 51(2): 702-707. http://dx.doi.org/10.1021/je050462y

Fu D, Zhang P, Du L and Dai J. Experiment and model for the viscosities of MEA-PEG400, DEA-PEG400 and MDEAPEG400 aqueous solutions. The Journal of Chemical Thermodynamics 2014; 78(0): 109-113. http://dx.doi.org/10.1016/j.jct.2014.06.017

DiGuilio RM, Lee RJ, Schaeffer ST, Brasher LL and Teja AS. Densities and Viscosities of the Ethanolamines. Journal of Chemical and Engineering Data 1992; 37(2): 239-242. http://dx.doi.org/10.1021/je00006a028

Ralph M. Maulllo, William L. McGregor and Amyn S. Tela. Thermal Conductivities of the Ethanolamines. J Chem Eng Data 1992; 37: 242-245. http://dx.doi.org/10.1021/je00006a029

Ramires MLV, De Castro CAN, Nagasaka Y, Nagashima A, Assael MJ and Wakeham WA. Standard reference data for the thermal conductivity of water. Journal of Physical and Chemical Reference Data 1995; 24(3): 1377-1381. http://dx.doi.org/10.1063/1.555963

Poling BE, Prausnitz JM, John PO and Reid RC. The properties of gases and liquids. McGraw-Hill New York 2001; 5.

Filippov LP. Liquid thermal conductivity research at Moscow University. International Journal of Heat and Mass Transfer 1968; 11(2): 331-345. http://dx.doi.org/10.1016/0017-9310(68)90161-0

Losenicky Z. Thermal Conductivity of binary liquid solutions. The Journal of Physical Chemistry 1968; 72(12): 4308-4310. http://dx.doi.org/10.1021/j100858a063

Bekoff M and Jamieson R. Physical Development in Coyotes (Canis latrans), with a Comparison to Other Canids. Journal of Mammalogy 1975; 56(3): 685-692. http://dx.doi.org/10.2307/1379485

Chiquillo A. Measurements of the Relative Thermal Conductivity of Aqueous Salt Solutions with a Transient Hot- Wire Method (Zurich: Juris Druck). Thesis No. 3955, Eidg. Technische Hochschule, Zurich, Switzerland (1967).

Wang P and Anderko A. Modeling thermal conductivity of concentrated and mixed-solvent electrolyte systems. Industrial and Engineering Chemistry Research 2008; 47(15): 5698-5709. http://dx.doi.org/10.1021/ie071373c

Akhmedova-Azizova LA and Abdulagatov IM. Thermal Conductivity of Aqueous K2CO3 Solutions at High Temperatures. Journal of solution chemistry 2009; 38(8): 1015-1028. http://dx.doi.org/10.1007/s10953-009-9428-x

Losenicky Z. Thermal conductivity of aqueous solutions of alkali hydroxides. The Journal of Physical Chemistry 1969; 73(2): 451-452. http://dx.doi.org/10.1021/j100722a036

Yaws CL, et al. Appendix ACoefficients for liquid thermal conductivity equation, in Handbook of Thermal Conductivity, L.Y. Carl, Editor, Gulf Professional Publishing 1995; 366-371. http://dx.doi.org/10.1016/s1874-8783(06)80046-2

Vargavtik NB, et al. Handbook of Thermal Condcucitivity of Liquids and Gases, CRC Press 1993; NY 131.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Nayef Ghasem, Nihmiya Abdul Rahim, Mohamed Al-Marzouqi