Abstract
The growing CO2 concentration in the atmosphere forces researchers to work on improving existing carbon dioxide capture technologies. This technology is energy-intensive and consumes significant amount of heat for solvent regeneration. Thermal conductivity is a key property for the estimation of the heat required for solvents regeneration. Accordingly, in the present work thermal conductivity is measured for six aqueous solvent used for this purpose; monoethanolamine (MEA), diethanolamine (DEA), 2-amino-2methyl-1-propanol (AMP), sodium hydroxide (NaOH), potassium carbonate (K2CO3), and potassium glycinate (PG) aqueous solutions for mole fraction range from 0.00 to 0.0825. The measurements were carried out at constant temperature (294.82K) and pressure (102.02kPa). The total experimental standard uncertainty of thermal conductivity, pressure, temperature, and mole fraction measurements were estimated to be ± 0.001 Wm-1K-1, ± 0.02kPa, ± 0.1K, and ± 0.0002, respectively. The measured values of thermal conductivity were compared with data and correlations reported in the literature. The average absolute deviation between measured and calculated values from available correlation equations for the thermal conductivity was lease than 0.5%.
References
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, et al. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 2008; 20(1): 14-27. http://dx.doi.org/10.1016/S1001-0742(08)60002-9
Yu CH, Huang CH and Tan CS. A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research 2012; 12(5): 745-769. http://dx.doi.org/10.4209/aaqr.2012.05.0132
Yeon SH, Lee KS, Sea B, Park YI and Lee KH. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. Journal of Membrane Science 2005; 257(1): 156-160. http://dx.doi.org/10.1016/j.memsci.2004.08.037
Rahim NA, Ghasem N and Al-Marzouqi M. Stripping of CO2 from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering 2014; 21: 886-893. http://dx.doi.org/10.1016/j.jngse.2014.10.016
Maham Y, Lebrette L and Mather AE. Viscosities and excess properties of aqueous solutions of mono-and diethylethanolamines at temperatures between 298.15 and 353.15 K. Journal of Chemical and Engineering Data 2002; 47(3): 550-553. http://dx.doi.org/10.1021/je015528d
Hsu CH and Li MH. Viscosities of aqueous blended amines. Journal of Chemical and Engineering Data 1997; 42(4): 714-720. http://dx.doi.org/10.1021/je970029r
Li H, Wilhelmsen P, Lv Y, Wang W, Yan J. Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: Review of experimental data and theoretical models. International Journal of Greenhouse Gas Control 2011; 5(5): 1119-1139. http://dx.doi.org/10.1016/j.ijggc.2011.07.009
Fu D, Li Z and Liu F. Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution. The Journal of Chemical Thermodynamics 2014; 68(0): 20-24. http://dx.doi.org/10.1016/j.jct.2013.08.025
Weiland RH, et al. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. Journal of Chemical and Engineering Data 1998; 43(3): 378-382. http://dx.doi.org/10.1021/je9702044
Park JY, et al. Density, Viscosity, and Solubility of CO2 in Aqueous Solutions of 2-Amino-2-hydroxymethyl-1, 3- propanediol. Journal of Chemical and Engineering Data 2002; 47(4): 970-973. http://dx.doi.org/10.1021/je0200012
Rebolledo-Libreros ME and Trejo A. Density and Viscosity of Aqueous Blends of Three Alkanolamines: NMethyldiethanolamine, Diethanolamine, and 2-Amino-2- methyl-1-propanol in the Range of (303 to 343) K. Journal of Chemical and Engineering Data 2006; 51(2): 702-707. http://dx.doi.org/10.1021/je050462y
Fu D, Zhang P, Du L and Dai J. Experiment and model for the viscosities of MEA-PEG400, DEA-PEG400 and MDEAPEG400 aqueous solutions. The Journal of Chemical Thermodynamics 2014; 78(0): 109-113. http://dx.doi.org/10.1016/j.jct.2014.06.017
DiGuilio RM, Lee RJ, Schaeffer ST, Brasher LL and Teja AS. Densities and Viscosities of the Ethanolamines. Journal of Chemical and Engineering Data 1992; 37(2): 239-242. http://dx.doi.org/10.1021/je00006a028
Ralph M. Maulllo, William L. McGregor and Amyn S. Tela. Thermal Conductivities of the Ethanolamines. J Chem Eng Data 1992; 37: 242-245. http://dx.doi.org/10.1021/je00006a029
Ramires MLV, De Castro CAN, Nagasaka Y, Nagashima A, Assael MJ and Wakeham WA. Standard reference data for the thermal conductivity of water. Journal of Physical and Chemical Reference Data 1995; 24(3): 1377-1381. http://dx.doi.org/10.1063/1.555963
Poling BE, Prausnitz JM, John PO and Reid RC. The properties of gases and liquids. McGraw-Hill New York 2001; 5.
Filippov LP. Liquid thermal conductivity research at Moscow University. International Journal of Heat and Mass Transfer 1968; 11(2): 331-345. http://dx.doi.org/10.1016/0017-9310(68)90161-0
Losenicky Z. Thermal Conductivity of binary liquid solutions. The Journal of Physical Chemistry 1968; 72(12): 4308-4310. http://dx.doi.org/10.1021/j100858a063
Bekoff M and Jamieson R. Physical Development in Coyotes (Canis latrans), with a Comparison to Other Canids. Journal of Mammalogy 1975; 56(3): 685-692. http://dx.doi.org/10.2307/1379485
Chiquillo A. Measurements of the Relative Thermal Conductivity of Aqueous Salt Solutions with a Transient Hot- Wire Method (Zurich: Juris Druck). Thesis No. 3955, Eidg. Technische Hochschule, Zurich, Switzerland (1967).
Wang P and Anderko A. Modeling thermal conductivity of concentrated and mixed-solvent electrolyte systems. Industrial and Engineering Chemistry Research 2008; 47(15): 5698-5709. http://dx.doi.org/10.1021/ie071373c
Akhmedova-Azizova LA and Abdulagatov IM. Thermal Conductivity of Aqueous K2CO3 Solutions at High Temperatures. Journal of solution chemistry 2009; 38(8): 1015-1028. http://dx.doi.org/10.1007/s10953-009-9428-x
Losenicky Z. Thermal conductivity of aqueous solutions of alkali hydroxides. The Journal of Physical Chemistry 1969; 73(2): 451-452. http://dx.doi.org/10.1021/j100722a036
Yaws CL, et al. Appendix ACoefficients for liquid thermal conductivity equation, in Handbook of Thermal Conductivity, L.Y. Carl, Editor, Gulf Professional Publishing 1995; 366-371. http://dx.doi.org/10.1016/s1874-8783(06)80046-2
Vargavtik NB, et al. Handbook of Thermal Condcucitivity of Liquids and Gases, CRC Press 1993; NY 131.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2016 Nayef Ghasem, Nihmiya Abdul Rahim, Mohamed Al-Marzouqi