Permselective Membranes for Gas Processing Replacing the Conventional Methods
PDF

Keywords

Synthetic membranes
Natural gas
separation of gases
polymeric membranes
inorganic membranes
membrane contractor
Olefin-paraffin separation

How to Cite

1.
K. C. Khulbe, T. Matsuura, C. Y. Feng. Permselective Membranes for Gas Processing Replacing the Conventional Methods. J. Chem. Eng. Res. Updates. [Internet]. 2016 Jul. 31 [cited 2025 Mar. 12];3(1):31-59. Available from: https://avantipublisher.com/index.php/jceru/article/view/885

Abstract

Membrane technology has gained acceptance for gas separation and recovery as membranes are friendly to the environment and less expensive. Membranes are starting to play a great role in industries such as separation and production of gases, sweetening of natural gas, processing of biogas and syngas, and oil refineries. This article evaluates the replacement of the conventional methods for gas processing by perm selective membranes and also offers an overview of the membrane technology in current use for gas processing in industries.

https://doi.org/10.15377/2409-983X.2016.03.01.3
PDF

References

Kajama MN, Shehu H and Gobina E. Purification of gases using nanoporous inorganic membranes. Int J Sci Eng Tech 2010; 3(9): 1156-1159.

Kerry F. Industrial Gas Handbook: Gas Separation and Purification, CRC Press 2007; 275-280.

Sridhar S, Smitha B and Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes - a review, Sep Purif Rev 2007; 36: 113-174. http://dx.doi.org/10.1080/15422110601165967

Gableman A and Hwang ST. Hollow fiber membrane contactors, J Membr Sci 1999; 159: 61-106. http://dx.doi.org/10.1016/S0376-7388(99)00040-X

Rongwong W, Jiraratananon R and Atchariyawut S. Experimental study of membrane wetting in gas-liquid membrane contacting process for absorption by single and mixed absorbents, Sep Purif Techno 69 (2009) 118-125. http://dx.doi.org/10.1016/j.seppur.2009.07.009

Haggin J. New generations of membranes developed for industrial separations. Chem Eng News 1988: 66: 7-16. http://dx.doi.org/10.1021/cen-v066n023.p007

Baker RW and Lokhandwala K. Natural gas processing with membranes: An overview. Ind Eng Chem Res 2008; 47 (7): 2109-2121. http://dx.doi.org/10.1021/ie071083w

Dortmundt D, Schot M and Cnop T. Sour gas processing applications using Separex membrane technology. UOP LLC, Des Plaines, Ill., 2007.

Atchariyawut S, Jiraratananon R and Wang R. Separation of CO2 from CH4 by using gas–liquid membrane contacting process. J Membr Sci 2007; 304(1-2): 163-172. http://dx.doi.org/10.1016/j.memsci.2007.07.030

Scholes CA, Stevens GW and Kentish SE. Membrane gas separation applications in natural gas processing. Fuel 2012; 96: 15-28. http://dx.doi.org/10.1016/j.fuel.2011.12.074

“Off shore processing plant uses membranes for CO2 removal”. Oil and Gas Journal, 05/28/2007.

NETL. CO2 capture membrane process for power plant flue gas. NT0005313, February 2011, Internet, June 30, 2015.

H2S Removal from natural gas: SOURSEP™, internet Feb. 2015. http://www.mtrinc.com/h2s_removal.html.

Cnop T, Dortmund D and Schott M. Continued development of gas separation membranes for highly sour service. UOP LLC, 25 East Algonquin Road, Des Plaines, Illinois, 60017, USA 2007.

Ravanchi MT and Kargari A. New advances in membrane technology. In Advanced Technology, INTECH 2009; Chapter 21: ISBN 978-953, 009-4.

Hydrogen fueling systems, available on line: http:www.protonsite.com/technology/hydrogen-fuelingsystems. html. (Accessed on 16th Oct. 1212).

He X and Hägg MB. Membranes for environmentally friendly energy processes. Membranes 2012; 2: 706-726. http://dx.doi.org/10.3390/membranes2040706

PRISM Membrane Products. http://www.airproducts.com/ products/Gases/supply-options/prism-membranes/prismmembrane- products.aspx

Stocker J, Whysall M and Miller G. 30 Years of PSA technology for hydrogen purification. UOP LLC 1998.

Adhikari S and Fernando S. Hydrogen membrane separation techniques. Ind Eng Chem Res 2006; 45(3): 875-881. http://dx.doi.org/10.1021/ie050644l

SCA. Kluiters Status review on membrane systems for hydrogen separation Intermediate report EU project MIGREYD NNE5-2001-670.

Delft YC, van JA, Hugill, van EM, Dorst HM and van Veen, Hydrogen preparation in process industry with inorganic membranes, ECN-CX-03-110 (confidential), ECN, November 2003; Petten.

Norby T and Haugsrud R. Dense Ceramic Membranes for hydrogen separation,:nonporous inorganic membranes. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim 2006.

Hydrogen Separation Membranes Technical Brief May 2010 http://www.undeerc.org/ncht/pdf/eercmh36028.pdf

Air Products. Hydrogen Recovery and Purification. www.airproducts com/Products/Equipment/PRISMMem branes/page08.html (accessed February 2010).

Kim D, Tzeng P, Barnett KJ, Yang YH, Wilhite BA and Grunlan JC. Highly size-selective ionically cross-linked multilayer polymer films for light gas separation. Adv Materials 2014; 26(5): 746-751. http://dx.doi.org/10.1002/adma.201302177

Hydrogen purification in refineries (MTR) http://www.mtrinc.com/pdf_print/refinery_and_syngas/MTR_ Brochure_Hydrogen_Purification.pdf, March 2015, MTR.

China’s gas separation by membrane technology advanced. China Chemical Reporter, April 2004.

Zhu X, Sun S, Cong Y and Yang W. Operation of perovskite membrane under vacuum and elevated pressures for highpurity oxygen production. J Membr Sci 2009; 345: 47-52. http://dx.doi.org/10.1016/j.memsci.2009.08.020

Buonomenna MG, Golemme G and Perrotta E. Membrane operations for industrial applications: Advances in Chemical Engineering. INTECH 2012.

Feng X, Ivory J and Rajan VSV. Air Separation by integrally asymmetric hollow fiber membranes. AIChE J 1999; 45: 2142-2152. http://dx.doi.org/10.1002/aic.690451013

Baker RW. Membrane technology and applications, McGraw- Hill New York. 2000.

Smith AR and Klosek J. A review of air separation technologies and their integration with energy conversion processes. Fuel Proc Technol 2001; 70: 115. http://dx.doi.org/10.1016/S0378-3820(01)00131-X

http://www.grasys.com/products/gas/oxygen/.

PermSelect 2015, http://permselect.com/markets/oxygenenrichment [Oxygen/Nitrogen-Enriched Air

http://www.ube-ind.co.jp/english/rd/separation_membranes. htm

The Essential Chemical Industry, Department of Chemistry, University of York, UK. 18th March 2013,

Faiz R and Li K. Polymer membranes for light olefin/paraffin separation. Desalination 2012; 287: 62-97. http://dx.doi.org/10.1016/j.desal.2011.11.019

Semenova SI. Polymer membranes for hydrocarbon separation and removal. J Membr Sci 2004; 231: 189-207. http://dx.doi.org/10.1016/j.memsci.2003.11.022

Ismail AF, Khulbe KC and Matsuura T. Gas separation membranes: Polymeric and Inorganic, Springer, New York, 2015.

Ma X, Williams S, Wei X, Kniep J and Lin YS. Propylene / propane mixture separation characteristics and stability of carbon molecular sieve membranes, Ind Eng Chem Res 2015; 2(54): 9824-9831. http://dx.doi.org/10.1021/acs.iecr.5b02721

Ma, Lin YS, Wei X and Kniep J. Ultrathin carbon molecular sieve membrane for propylene/propane separation, AIChE J 2016; 62: 491-499. http://dx.doi.org/10.1002/aic.15005

Kwon HT, Jeong HK, Lee AS, An HS and Lee JS. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene / propane separation performances. J Am Chem Soc 2015; 137(38): 12304-12311. http://dx.doi.org/10.1021/jacs.5b06730

Rao MB, Sircar SS and Golden TC. Gas separation by adsorbent membranes. US 1992; Patent 5(104): 425.

Rao MB and Sircar S. Performance and pore characterization of nanoporous carbon membranes for gas separation J Membr Sci 110 (1996); 109-118. http://dx.doi.org/10.1016/0376-7388(95)00241-3

Rao MB and Sircar S. Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. J Membr Sci 1993; 85: 253-264. http://dx.doi.org/10.1016/0376-7388(93)85279-6

Hägg MB and He X. Carbon molecular sieve membranes for gas separation: Membrane engineering for the treatment of gases: Volume 2: Gas-separation problems combined with membrane reactors, RSC 2011.

Ma X, Swaidan R, Teng B, Tan H, Salinas O and Litwiller E. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon 2013; 62: 88-96. http://dx.doi.org/10.1016/j.carbon.2013.05.057

Brandt P. Addition compounds of olefins with metal salts, Part 2. Acta Chem Scand 1959; 13: 1639-1652. http://dx.doi.org/10.3891/acta.chem.scand.13-1639

Nymeijer K, Visser T, Assen R and Wessling M. Super selective membranes in gas-liquid membrane contactors for olefin/paraffin separation. J Membr Sci 2004; 232 (1-2): 107-114. http://dx.doi.org/10.1016/j.memsci.2003.10.045

http://en.wikipedia.org/wiki/Natural_gas

Honeywell’s UOP Introduces New Membrane Element To Improve Natural Gas Processing Capacity (Honeywell, Press Releases, 26th Feb. 2013). http://honeywell.com/News/ Pages/Honeywell%E2%80%99s-UOP-Introduces-New- Membrane-Element-To-Improve-Natural-Gas-Processing- Capacity.aspx, June 2014

Walter KG. Process for separating higher hydrocarbons from natural or produced gas streams. US 4857078 A, 1989.

Reyes SC. Separation of methane from higher carbon number hydrocarbons utilizing zeoliticimidazolate framework materials. US 8192709 B2, 2012.

Baker RW. Future direction of membrane gas separation technology. Ind Eng Chem Res 2002; 41: 1393-14. http://dx.doi.org/10.1021/ie0108088

Jariwala KA, Lokhandwala K and Baker RW. Only raw sour gas for engine fuel? Proven membrane process cleans gas for engines. Presented at the Laurance Reid Conditioning Conference. University of Okhlahoma, Norman, OK, 2006.

Lokhandwala KA and Jacobs ML. Membranes for fuel gas conditioning, Hydrocarbon Eng 2000; 5(5): 81-84.

LPG Recovery from Associated Gas: LPG-SepTM (MTR) http://www.mtrinc.com/natural_gas_liquids_recovery.html

Natural Gas Processing Plants in the United States: 2010 Update, U.S. Energy Information Administration, Natural Gas. Released date June 17, 2011.

Mohamadbeigy KH. Studying of the effectiveness parameters on gas dehydration plant, Petroleum and Coal 2008; 50(2): 47-51.

Advanced membrane technology for hydrocarbon separations: New membrane technology for natural gas dehydration promises improved separation efficiency, U.S. Department of Energy, Energy Efficiency and Renewable Energy, May 2009.

Feng H, Zhang H and Xu L. Polymeric membranes for natural gas conditioning. Energy Sources Part A: Recovery, Utilization and Environmental Effect 2007; 29(14): 1269-1278. http://dx.doi.org/10.1080/00908310600623611

Liu L, Chen Y and Kang Y. Industrial development for natural gas dehydration by membrane. Petrochem Eng 2001; 30: 302-304. (In Chinese).

Lin H, Thompson MSM, Serbanescu-Martin A, Wijmans JG, Amo KD and Lokhandwala KA. Dehydration of natural gas using membranes. Part I: Composite membranes. J Membr Sci 2012; 413-414: 70-81. http://dx.doi.org/10.1016/j.memsci.2012.04.009

Morgan WH, Bleikamp LK and Kalthod DG. Hollow Fiber Membrane Dryer with Internal Sweep. US Patent 5, 1996; 525: 143. 1996 Jun 11.

Zhao B, Peng N, Liang C, Yong WF and hung TS. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System, Membranes (Basel) 2015; 5(4): 722-738.

Lin H, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, et al. Dehydration of natural gas using membranes. Part II: Sweep/countercurrent design and field test, J. Membr. Sci.2013; 432:106-114. http://dx.doi.org/10.1016/j.memsci.2012.12.049

Liu C, Faheem SA and Minkov R. Membrane system for natural gas upgrading, US 8575414 B2, 2013.

http://www.mtrinc.com/publications/GPAATLANTA.pdf

http://www.borsig-china.com June 15, 2015.

RW. Baker, Vapor and gas separation by membranes: Advanced membrane technology and applications, Hoboken NJ, John Wiley and Sons. 2008. http://dx.doi.org/10.1002/9780470276280.ch21

Corvini G, Stiltner J and Clark K. Mercury removal. UOP. http://www.uop.com/?document=mercury-removal-fromnatural- gas-and-liquid-streams&download=1.7

Echt WI and Singh M. Integration of membranes into natural gas process schemes. UOP LLC, A Honeywell Company, http://www.uop.com/?document=integration-of-membranesinto- natural-gas-process-schemes&download=1

UOP Offshore Gas Processing, Proven gas treating solutions for offshore floating or fixed platforms. https://www.honeywell-uop.cn/wpcontent/ uploads/2011/10/UOP-Offshore-Gas-Processingbrochure. pdf

Honeywell’s UOP launches new membrane element to improve contaminant removal from natural gas, 2013.

Rasi S, Veijanen A and Rintala J. Trace compounds of biogas from different biogas production plan. Energy 2007; 32: 1375-1380. http://dx.doi.org/10.1016/j.energy.2006.10.018

He X and Hägg MB. Membranes for environmentally friendly energy processes. Membranes, 2012; 2:706-726. http://dx.doi.org/10.3390/membranes2040706

CO2 Removal from Syngas (MTR). http://www.mtrinc. com/co2_removal_from_syngas.html Feb. 2015.

Smith DR, Lander RJ and Quinn JA. Carrier-mediated transport in synthetic membranes; Recent Developments in Separation Science, 3, CRC Press, Cleveland, Ohio, 1977.

Noble RD and Way JD. Eds. Liquid Membranes: Theory and Applications. ACS Symposium Series 347, American Chemical Society: Washington, DC 1987.

Araki T and Tsukube H. Eds. Liquid Membranes: Chemical Applications. CRC Press: Boca Raton, FL, 1990.

Bartsch RA and Way JD. Eds. Chemical Separations with Liquid Membranes. ACS Symposium Series 642. American Chemical Society: Washington, DC 1996.

Liang L, Gan Q and Nancarrow P. Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. J Membr Sci 2014; 450: 407-417. http://dx.doi.org/10.1016/j.memsci.2013.09.033

Petra C and Katalin B. Application of Ionic Liquids in, Membrane Separation Processes, in Ionic Liquids: Applications and Perspectives, Edi. Alexander Kokorin, chapter 25, pp. 561-586, ISBN 978-953-307-2011.

Li N. Separating hydrocarbons with liquid membranes. US 1968; 3: 410-794.

Cserjési P, Nemestóthy N, Vass A, Csanádi Z and Bélafi- Bako K. Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 2009; 246: 370-374. http://dx.doi.org/10.1016/j.desal.2009.02.046

Bessarabov DG, Jacobs EP, Sanderson RD and Beckman LN. Use of nonporous polymeric flat-sheet gas separation membranes in a membrane-liquid contactor: experimental studies. J Membr Sci 1996; 113; 275-284. http://dx.doi.org/10.1016/0376-7388(95)00126-3

Jiang Y, Zhou Z, Jiao Z, Li L, Wu YT and Zhang ZB. SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 2007; 111 (19): 5058-5061. http://dx.doi.org/10.1021/jp071742i

Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog Polym Sci 2011; 36: 1629-1648. http://dx.doi.org/10.1016/j.progpolymsci.2011.05.007

Bara JE, Hatakeyama ES, Gin DL and Noble RD. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 2008; 321: 3-7. http://dx.doi.org/10.1016/j.memsci.2007.12.033

Carlisle TK, Wiesenauer EF, Nicodemus GD, Gin DL and Noble RD. Ideal CO2/light gas separation performance of poly (vinylimidazolium) membranes and poly (vinylimidazolium)-ionic liquid composite films. Ind Eng Chem Res 2013; 52 (3): 1023-1032. http://dx.doi.org/10.1021/ie202305m

Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S and Noble RD. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 2008; 321: 3-7. http://dx.doi.org/10.1016/j.memsci.2007.12.033

Gu Y and Lodge TP. Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules 2011: 44(7): 1732-1736. http://dx.doi.org/10.1021/ma2001838

Simons K, Nijmeijer K and Wessling M. Gas-liquid membrane contactors for CO2 removal. J Membr Sci 2009; 340: 214-220. http://dx.doi.org/10.1016/j.memsci.2009.05.035

Chilukuri P, Rademakers K, Nymeijer K, Vabn der Ham L and Van den Berg H. Propylene/propane separation with a gas/liquid membrane contactor using a silver salt solution. Ind Eng Chem Res 2007; 46: 8701-8709. http://dx.doi.org/10.1021/ie070556w

Zein R, Nassar AF and Mostafa TM. Design of a chemical absorption system for the separation of propane/propylene, Scientific Cooperation International Workshops on Engineering Branches, 9th August 2014, Koc University, Istanbul, Turkey.

Stanojević M, Lazarević B and Radić D. Review of membrane contactors designs and applications of different modules in industry. FME Transactions 2003: 31: 91-98.

Wankat PC and Kostroski KP. Hybrid membrane-cryogenic distillation air separation process for oxygen production. Sep Sci Technol 2011: 46; 1439-1545. http://dx.doi.org/10.1080/01496395.2011.577497

Burdyny T and Struchtrup H. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy 2010; 35(5); 1884-1897. http://dx.doi.org/10.1016/j.energy.2009.12.033

Ye P, Korelskiy D, Grahn M and Hedlund J. Cryogenic air separation at low pressure using MFI membranes. J Membr Sci 2015; 487: 135-140. http://dx.doi.org/10.1016/j.memsci.2015.03.063

Ye P, Sjöberg E and Hedlund J. Air separation at cryogenic temperature using MFI membranes. Micro Meso Mater 2014; 192: 14-17. http://dx.doi.org/10.1016/j.micromeso.2013.09.016

Rufford TE, Chan KI, Huang SH and May EF. A Review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorption Sci Technol 2014; 32(1): 49-72. http://dx.doi.org/10.1260/0263-6174.32.1.49

Feng X, Pan CY, Ivory J. Pressure swing permeation: Novel process for gas separation by membranes. AIChE J 2000; 46(4): 724-733. http://dx.doi.org/10.1002/aic.690460407

Lipnizki F, Field WR and Ten PK. Pervaporation-based hybrid process: a review of process design, applications and economics. J Membr Sci 1999; 153: 183-210. http://dx.doi.org/10.1016/S0376-7388(98)00253-1

Burkinshaw JR and Waldo RA. Distillation plus membrane processing of gas streams. US 4936887 A, 1998.

Motelica A, Bruinsma OSL, Kreiter R, den Exter M and Vente JF. Retrofit with membrane the paraffin/olefin separation. ECN-M-12-059, October 2012.

Rufford TE, Chan KI, Huang SH and May EF. A review of conventional and emerging process technologies for the recovery of helium from natural gas. Adsorption Sci Technol 2014: 32(1): 49-72. http://dx.doi.org/10.1260/0263-6174.32.1.49

Nikolić DD and Kikkinides ES. Modelling and optimization of hybrid PSA / membrane separation processes. Adsorption 2015; 21(4): 283-305. http://dx.doi.org/10.1007/s10450-015-9670-z

Stoner G, Reinhold HFI, D’Amico J and Knaebel KS. Enhanced helium recovery. US patent no. 5632803, 1997.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 K. C. Khulbe, T. Matsuura, C. Y. Feng