Protein Adsorption Behavior on the Surface of the Microfiltration Membrane Based on a Quartz Crystal Microbalance (QCM)
PDF

Keywords

Static Adsorption
QCM
Microfiltration Membrane
Isotherm Models

How to Cite

1.
Zhou Wang, Yadong Kong, Qian Zhang, Zhan Wang, Natsagdorj Khaliunaa, Rooha Khurram, Yuenan Zhou, Tungalagtamir Bold, Khan Bushra. Protein Adsorption Behavior on the Surface of the Microfiltration Membrane Based on a Quartz Crystal Microbalance (QCM). J. Chem. Eng. Res. Updates. [Internet]. 2018 Dec. 31 [cited 2024 Nov. 21];5(1):10-9. Available from: https://avantipublisher.com/index.php/jceru/article/view/892

Abstract

How to fast and efficiently determinate the fouling behavior of the microfiltration membrane has great significance for the industrial membrane application. In this paper, the MF membrane was put on the surface of a gold-coated quartz crystal of QCM to study the adsorption behavior of protein at different conditions. The adsorbed mass increased with the increasing of concentration, ionic strength and temperature while decreased with the increasing of pH. Then the BSA adsorption results were compared with the corresponding membrane flux in dead-end cell at the identical conditions. Furthermore, the BSA adsorption process can be described by Langmuir and Freundlich isotherms very well. These results suggested that directly putting the membrane on the surface of a gold-coated quartz crystal of QCM can be used as a rapid and efficient approach to study protein fouling on the membrane surface. This approach using QCM and a small piece of the membrane could yield quantitative information for adsorption kinetics investigation and reduce the workload in large-scale industrial project.

https://doi.org/10.15377/2409-983X.2018.05.2
PDF

References

Y. Miura, Y. Watanabe, S. Okabe, Membrane fouling in pilotscale membrane bioreactors (MBRs) treating municipal wastewater: Impact of biofilm formation, Environ. Sci. Technol. 41 (2007) 632-638. https://doi.org/10.1021/es0615371

S.G. Yiantsios, A.J. Karabelas, An experimental study of humic acid and powdered activated carbon deposition on UF membranes and their removal by backwashing, Desalination 140 (2001) 195-209. https://doi.org/10.1016/S0011-9164(01)00368-X

K. Kimura, N. Yamato, H. Yamamura, Y. Watanabe, Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater, Environ. Sci. Technol. 39 (2005) 6293-6299. https://doi.org/10.1021/es0502425

K. Katsoufidou, S.G. Yiantsios, A.J. Karabelas, An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery, Desalination 220 (2008) 214-227. https://doi.org/10.1016/j.desal.2007.02.038

F., Meng, S.R. Chae, A., Drews, M. Kraume, H.S. Shin, F. Yang, 2009. Review: recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water Res. 43 (2009) 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044

M.F. Dignac, V. Urbain, Chemical description of extracellular polymers: implication on activated sludge floc structure, Water Sci. Technol. 38 (1998) 45-53. https://doi.org/10.2166/wst.1998.0789

B. Frølund, T. Griebe, P.H. Nielsen, Enzymatic activity in the activated-sludge floc matrix, Appl. Microbiol. Biot. 43 (1995) 755-761. https://doi.org/10.1007/s002530050481

B. FrØlund, R. Palmgren, Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30 (1996) 1749-1758. https://doi.org/10.1016/0043-1354(95)00323-1

J.I. Houghton, T. Stephenson, Effect of influent organic content on digested sludge extracellular polymer content and dewater ability, Water Res. 36 (2002) 3620-3628. https://doi.org/10.1016/S0043-1354(02)00055-6

S. Tsuneda, S. Park, Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria, Water Sci. Technol. 43 (2001) 197-204. https://doi.org/10.2166/wst.2001.0374

J.Y. Yoon, J.H. Kim, W.S. Kim, Interpretation of protein adsorption phenomena onto functional microspheres, Colloid. Surface. B 12 (1998) 15-22. https://doi.org/10.1016/S0927-7765(98)00045-9

H. Nagaoka, S. Yamanishi, A. Miya, Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system, Water Sci. Technol. 38 (1998) 497- 504. https://doi.org/10.2166/wst.1998.0705

S. Ognier, C. Wisniewski, Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension, J. Membr. Sci. 209 (2007) 27-37. https://doi.org/10.1016/S0376-7388(02)00123-0

S. Rosenberger, H. Evenblij, S. Tepoele, T. Wintgens, C. Laabs, The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge Processes-six case studies of different European research groups, J. Membr. Sci. 263 (2005) 113-126. https://doi.org/10.1016/j.memsci.2005.04.010

M. Yao, K. Zhang, L. Cui, Characterization of proteinpolysaccharide ratios on membrane fouling, Desalination 259 (2010) 11-16. https://doi.org/10.1016/j.desal.2010.04.049

Y. Ye, P. Le Clech, V. Chen, Fouling mechanisms of alginate solutions as model extracellular polymeric substances, Desalination 175 (2005) 7-20. https://doi.org/10.1016/j.desal.2004.09.019

Y. Ye, P. Le Clech, V. Chen, Evolution of fouling during crossflow filtration of model EPS solutions, J. Membr. Sci. 264 (2005) 190-199. https://doi.org/10.1016/j.memsci.2005.04.040

K. Nakamura, K. Matsumoto, Protein adsorption properties on a microfiltration membrane: a comparison between static and dynamic adsorption methods, J. Membr. Sci. 285 (2006) 126-136. https://doi.org/10.1016/j.memsci.2006.08.012

H. Susanto, M. Ulbricht, Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans, J. Membr. Sci. 266 (2005) 132-142. https://doi.org/10.1016/j.memsci.2005.05.018

P. Aimar, S. Baklouti, V. Sanchez, Membrane-solute interaction: influence on pure solvent transport during ultrafiltration, J. Membr. Sci. 29 (1986) 207-224. https://doi.org/10.1016/S0376-7388(00)82470-9

S.M.G. Demneh, B. Nasernejad, H. Modarres, Modeling investigation of membrane biofouling phenomena by considering the adsorption of protein, polysaccharide and humic acid, Colloid. Surface. B. (2011) 108-114. https://doi.org/10.1016/j.colsurfb.2011.06.018

Y.N. Zhou, Z. Wang, Q. Zhang, X.J. Xi, J. Zhang, W.T. Yang, Equilibrium and thermodynamic studies on adsorption of BSA using PVDF microfiltration membrane, Desalination 307 (2012) 61-67. https://doi.org/10.1016/j.desal.2012.09.004

J.Y. Yoon, J.H. Kim, W.S. Kim, The relationship of interaction forces in the protein adsorption onto polymeric microspheres, Colloid Surf. A-Physicochem. Eng. Asp. 153 (1999) 413-419. https://doi.org/10.1016/S0927-7757(98)00533-0

C.G. Marxer, M.C. Coen, L. Schlapbach, Study of adsorption and viscoelastic properties of proteins with a quartz crystal microbalance by measuring the oscillation amplitude, J. Colloid Interface Sci. 261 (2003) 291-298. https://doi.org/10.1016/S0021-9797(03)00089-4

A.G. Hemmersam, M. Foss, J. Chevallier, F. Besenbacher, Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique, Colloid. Surface.B. 43 (2005) 208-215. https://doi.org/10.1016/j.colsurfb.2005.04.007

Y. Liu, X. Yu, R. Zhao, Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents, Biosens. Bioelectron. 19 (2003) 9-19. https://doi.org/10.1016/S0956-5663(03)00127-1

M.S. Lord, M.H. Stenzel, A. Simmons, B.K. Milthorpe, The effect of charged groups on protein interactions with poly (HEMA) hydrogels, Biomaterials 27 (2006) 567-575. https://doi.org/10.1016/j.biomaterials.2005.06.010

F. Hook, J. Voros, M. Rodahl, A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide light mode spectroscopy, and quartz crystal microbalance/dissipation, Colloid. Surface. B. 24 (2002) 155-170. https://doi.org/10.1016/S0927-7765(01)00236-3

F. Yin, S. Park, HK. Shin, Study of hemoglobinoctadecylamine Lb film formation and deposition by compressibility analyse, QCM and AFM. Curr. Appl. Phys. 6 (2006) 728-734. https://doi.org/10.1016/j.cap.2005.04.028

M.S. Lord, B.G. Cousins, P.J. Doherty, The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response, Biomaterials 27 (2006) 4856-4862. https://doi.org/10.1016/j.biomaterials.2006.05.037

G.V. Lubarsky, M.R. Davidson, R.H. Bradley, Hydrationdehydration of adsorbed protein films studied by AFM and QCM, Biosens. Bioelectron. 22 (2006) 1275-1281. https://doi.org/10.1016/j.bios.2006.05.024

X. Chu, Z.L. Zhao, G.L. Shen, Quartz crystal microbalance immunoassay with dendritic amplification using colloidal gold immunocomplex, Sensor. Actuat. B-Chem. 114 (2006) 696- 704. https://doi.org/10.1016/j.snb.2005.06.014

J.S. Kavanaugh, W.F. Moo-Penn, A. Arnone, Accommodation of insertions in helixes: The mutation in hemoglobin catonsville (Pro37. alpha.-Glu-Thr 38. alpha.) generates a 310.fwdarw. alpha. Bulge, Biochemistry 32 (1993) 2509-2513. https://doi.org/10.1021/bi00061a007

A. Welle, A. Chiumiento, R. Barbucci, Biomolecular Engineering 24 (2006) 87. https://doi.org/10.1016/j.bioeng.2006.05.027

B. Van der Bruggen, L. Braeken, C. Vandecasteele, Flux decline in nanofiltration due to adsorption of organic compounds, Sep. Purif. Technol. 29 (2002) 23-31. https://doi.org/10.1016/S1383-5866(01)00199-X’

C. Velasco, J.I. Calvo, L. Palacio, J. Carmona, P. Prádanos, A. Hernández, Flux kinetics, limit and critical fluxes for low pressure dead-end microfiltration. The case of BSA Filtration through a Positively Charged Membrane, Chem. Eng. Sci. 129 (2015) 58-68. https://doi.org/10.1016/j.ces.2015.02.003

H.P. Chu, X. Li, Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics, Biotechnol. Bioeng. 90 (2005) 323-331. https://doi.org/10.1002/bit.20409

K.L. Jones, C.R. O'Melia, Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength, J. Membr. Sci. 165 (2000) 31-46. https://doi.org/10.1016/S0376-7388(99)00218-5

A. Fane, C. Fell, A. Suki, The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes, J. Membr. Sci. 16 (1983) 195-210. https://doi.org/10.1016/S0376-7388(00)81310-1

C.A. Haynes, W. Norde, Globular proteins at solid/liquid interfaces, Colloid. Surface. B. 2 (1994) 517-566. https://doi.org/10.1016/0927-7765(94)80066-9

M. Hashino, K. Hirami, T. Ishigami, Y. Ohmukai, T. Maruyama, N. Kubota, H. Matsuyama, Effect of kinds of membrane materials on membrane fouling with BSA, J. Membr. Sci. 384 (2011) 157- 165. https://doi.org/10.1016/j.memsci.2011.09.015

J. Hu, S.J. Li, B.L. Liu, Adsorption of BSA onto sulfonated microspheres, Biochem. Eng. J. 23 (2005) 259-263. https://doi.org/10.1016/j.bej.2005.01.018

X.M. Yan, J. Kong, C.C. Yang, G.Q. Fu, Facile synthesis of hairy core-shell structured magnetic polymer submicrospheres and their adsorption of bovine serum albumin, J. Colloid Interf. Sci. 445 (2015) 9-15. https://doi.org/10.1016/j.jcis.2014.12.022

H.J. Mo, K.G. Tay, H.Y. Ng, Fouling of reverse osmosis membrane by protein (BSA): Effects of pH, calcium, magnesium, ionic strength and temperature, J. Membr. Sci. 315 (2008) 28-35. https://doi.org/10.1016/j.memsci.2008.02.002

U.V. Dortmund, F. Chemie, O.H Strass, O. Hollmann, C. Czeslik, Characterization of a Planar Poly(acrylic acid) Brush as a Materials Coating for Controlled Protein Immobilization, Langmuir 22 (2006) 3300-3305. https://doi.org/10.1021/la053110y

D. Xu, X.L. Tan, C.L. Chen, X.K. Wang, Adsorption of Pb (II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature, Applied Clay Science 41 (2008) 37-46. https://doi.org/10.1016/j.clay.2007.09.004

C.V. Vidal, A.O. Juan, A.I. Muñoz, Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration, Colloid. Surface B. 80 (2010) 1- 11. https://doi.org/10.1016/j.colsurfb.2010.05.005

Y.Y. Wang, T. Wang, Y.L. Su, F.B. Peng, H. Wu, Z.Y. Jiang, Remarkable Reduction of Irreversible Fouling and Improvement of the Permeation Properties of Poly(ether sulfone) Ultrafiltration Membranes by Blending with Pluronic F127, Langmuir 21 (2005) 11856-11862. https://doi.org/10.1021/la052052d

A.D. Marshall, P.A. Munro, G. Trägårdh, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review, Desalination 91 (1993) 65-108. https://doi.org/10.1016/0011-9164(93)80047-Q

Nigam, M.O., Bansal B., Chen X.D, Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes, Desalination 218 (2008) 313-322. https://doi.org/10.1016/j.desal.2007.02.027

X.S. Yi, W.X. Shi, S.L. Yua, Y. Wang, N. Suna, L.M. Jin, S. Wang, 2011. Isother and kinetic behavior of adsorption of anion polyacrylamide (APAM) from aqueous solution using two kinds of PVDF UF membranes, J. Hazard. Mater. 189 (2011) 495-501. https://doi.org/10.1016/j.jhazmat.2011.02.063

T. Kopac, K. Bozgeyik, J. Yener, Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide, Colloid Surf. A- Physicochem. Eng. Asp. 322 (2008) 19-28. https://doi.org/10.1016/j.colsurfa.2008.02.010

T. Trongsatitkul, B.M. Budhlall, Temperature dependence of serum protein adsorption in PEGylated PNIPAm Microgels, Colloid Surface B. 103 (2013) 244-252. https://doi.org/10.1016/j.colsurfb.2012.10.053

N. Shamim, L. Hong, K. Hidajat, M.S. Uddin, Thermosensitive-polymer-coated magnetic nanoparticles: Adsorption and desorption of Bovine Serum Albumin, J. Colloid Interface Sci. 304 (2006) 1-8. https://doi.org/10.1016/j.jcis.2006.08.047

C. Veerman, L.M.C. Sagis, J. Heck, E.V.D. Linden, Mesostructure of fibrillar bovine serum albumin gels, Int. J. Biol. Macromol. 31 (2003) 139-146. https://doi.org/10.1016/S0141-8130(02)00074-0

M. Alkan, O. Demirbas, S. Celikcapa, M. Dogan, Sorption of acid red 57 from aqueous solution onto sepiolite, J. of Hazard. Mater. 116 (2004) 135-145. https://doi.org/10.1016/j.jhazmat.2004.08.003

Y.Y. Zuo, R. Gitiafroz, E. Acosta, Z. Policova, P. N. Cox, M.L. Hair, A.W. Neumann, Effect of Humidity on the Adsorption Kinetics of Lung Surfactant at Air-Water Interfaces, Langmuir 21 (2005) 10593-10601. https://doi.org/10.1021/la0517078

N. Chandrasekaran, S. Dimartino, C.J. Fee, Study of the adsorption of proteins on stainless steel surfaces using QCM-D, Chem. Eng. Res. Des. 91 (2013) 1674-1683. https://doi.org/10.1016/j.cherd.2013.07.017

K. C. Dee, D.A. Puleo, R. Bizios, Biomaterials, in An Introduction to Tissue biomaterial interactions, New Jersey, NJ: John Willey and Sons Inc. press. (2002) 165-214. https://doi.org/10.1002/0471270598

A.R. Sarasam, R.K. Krishnswamy, S.V. Madihally, Blending ehitosan with Polycaprolactone: effects on Physicochemical and antibacterial properties, Biornacromoleeules 7 (2006) 1131-1138. https://doi.org/10.1021/bm050935d

L. Feng, J.D. Andrade, Protein adsorption on low temperature isotropic carbon: III. isotherms, competitivity, desorption and exchange of human albumin and fibrinogen, Biomaterials 15 (1994) 323-33. https://doi.org/10.1016/0142-9612(94)90243-7

L. Feng, J.D. Andrade, Structure and adsorption properties of fibrinogen, In Proteins at interfaces II; Horbett T., et al., ACS Symposium Series; American Chemical Society: Washington, DC (1995) 66-79. https://doi.org/10.1021/bk-1995-0602.ch005

M.Q. Zhang, T. Desai, M. Ferrari, Proteins and cells on PEG immobilized silicon surfaces, Biomaterials 19 (1998) 953- 960. https://doi.org/10.1016/S0142-9612(98)00026-X

P. Le-Clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci. 284 (2006) 17-53. https://doi.org/10.1016/j.memsci.2006.08.019

J.L.G. Ribelles, Blending polysaccharides with biodegradable Polymers. I. Properties of chitosan/polycaprolactone blends, J. Biomed. Mater. Res. B 85 (2008) 303-313. https://doi.org/10.1002/jbm.b.30947

G.J. Zhang, S.L. Ji, X. Gao, Z.Z. Liu, Adsorptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes, J. Membr. Sci. 309 (2009) 28-35. https://doi.org/10.1016/j.memsci.2007.10.012

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Zhou Wang, Yadong Kong, Qian Zhang, Zhan Wang, Natsagdorj Khaliunaa, Rooha Khurram, Yuenan Zhou, Tungalagtamir Bold, Khan Bushra