Abstract
Xylitol, a natural crystalline polyol, presents a cooling effect due to its negative heat of solution at 35 °C supported by humidity absorption, contributing to a fresh sensation when it dissolves. Since this material is sometimes in a liquid state, it cannot be incorporated in or onto a substrate without being protected. One of the strategies to protect the active substance may be forming a barrier layer at its surface, i.e., microencapsulation. The present work is devoted to studying the effect of continuous phase parameters affecting on encapsulation of xylitol with a poly (urea-urethane) shell through a two-step microencapsulation process. The first step is liquid-liquid dispersion either in toluene or Miglyol 812N, and the second step is microencapsulation by interfacial polymerization. The process can be used to control the size distribution of the microparticles, the thickness, and the chemical nature of the shell, which influences the release rate of the active substance. The choice of the continuous phase solvent (toluene or Miglyol 812N) required some changes in the formulation of the system, especially the HLB of the surfactant mixture, to obtain a stable emulsion with a narrow particle size distribution. The thermo-chemical and morphological characteristics of microparticles were studied by Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), enthalpy of dilution, and scanning electron microscope (SEM). The microparticle size is governed by the emulsion step and the chemical composition of the organic phase. Most of the thermal properties are related to their porous structure and their chemical shell formation during the interfacial polymerization step.
References
Reyes-Ortega F, Hosseini M. Smart Polymeric-Based Microencapsulation: A Promising Synergic Combination. In: Hosseini M, Makhlouf ASH, editors. Industrial Applications for Intelligent Polymers and Coatings2016. p. 577-604. https://doi.org/10.1007/978-3-319-26893-4_27
Boh B, Sumiga B. Microencapsulation technology and its applications in building construction materials. Materials and Geoenvironment. 2008;55(3):329-44.
Salaün F. Microencapsulation technology for smart textile coatings. In: Hu J, editor. Active Coatings for Smart Textiles: Woodhead Publishing; 2016. p. 179-220. https://doi.org/10.1016/B978-0-08-100263-6.00009-5
Farooq AS, Zhang P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Composites Part A: Applied Science and Manufacturing. 2021;142. https://doi.org/10.1016/j.compositesa.2020.106249
Bedek G, Salaün F, Martinkovska Z, Devaux E, Dupont D. Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions. Appl Ergon. 2011;42(6):792-800. https://doi.org/10.1016/j.apergo.2011.01.001
Salaün F, Bedek G, Devaux E, Dupont D, Gengembre L. Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. J Membrane Sci. 2011;370(1-2):23-33. https://doi.org/10.1016/j.memsci.2010.11.033
Salaün F, Bedek G, Devaux E, Dupont D, Deranton D. Investigation of water absorption and diffusion in microparticles containing xylitol to provide a cooling effect by thermal analysis. Int J Thermophys. 2009;30(4):1242-56. https://doi.org/10.1007/s10765-009-0649-4
Delgado Arcaño Y, Valmaña García OD, Mandelli D, Carvalho WA, Magalhães Pontes LA. Xylitol: A review on the progress and challenges of its production by chemical route. Catal Today. 2020;344:2-14. https://doi.org/10.1016/j.cattod.2018.07.060
Petrulis D, Petrulyte S. Potential use of microcapsules in manufacture of fibrous products: A review. J Appl Polym Sci. 2018;136(7). https://doi.org/10.1002/app.47066
Salaün F. Microencapsulation by Interfacial Polymerization. In: Mittal V, editor. Encapsulation Nanotechnologies. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013. p. 137-73. https://doi.org/10.1002/9781118729175.ch5
Perignon C, Ongmayeb G, Neufeld R, Frere Y, Poncelet D. Microencapsulation by interfacial polymerisation: membrane formation and structure. J Microencapsul. 2015;32(1):1-15. https://doi.org/10.3109/02652048.2014.950711
Ben Abdelkader M, Azizi N, Baffoun A, Chevalier Y, Majdoub M. New microcapsules based on isosorbide for cosmetotextile: Preparation and characterization. Ind Crop Prod. 2018;123:591-9. https://doi.org/10.1016/j.indcrop.2018.07.020
Silva M, Martins I, Barreiro F, Dias M, Rodrigues AE. Preparation and characterization of poly(urethane-urea) microcapsules containing limonene. Kinetic analysis. Int J Polym Anal Ch. 2017;22(8):709-24. https://doi.org/10.1080/1023666X.2017.1369253
Jabbari E, Khakpour M. Morphology of and release behavior from porous polyurethane microspheres. Biomaterials. 2000;21(20):2073-9. https://doi.org/10.1016/S0142-9612(00)00135-6
Frere Y, Danicher L. Microencapsulation par polycondensation inter-faciale. In: Vandamme T, Poncelet D, Subra-Paternault P, editors. Microencapsulation: des sciences aux technologies. Paris, France: Librairie Lavoisier; 2007. p. 54-69.
Ricardo F, Pradilla D, Luiz R, Alvarez Solano OA. A Multi-Scale Approach to Microencapsulation by Interfacial Polymerization. Polymers (Basel). 2021;13(4). https://doi.org/10.3390/polym13040644
Alizadegan F, Pazokifard S, Mirabedini SM, Danaei M, Farnood R. Polyurethane-based microcapsules containing reactive isocyanate compounds: Study on preparation procedure and solvent replacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;529:750-9. https://doi.org/10.1016/j.colsurfa.2017.06.058
Held C, Sadowski G, Carneiro A, Rodríguez O, Macedo EA. Modeling thermodynamic properties of aqueous single-solute and multi-solute sugar solutions with PC-SAFT. Aiche J. 2013;59(12):4794-805. https://doi.org/10.1002/aic.14212
Goodarzi F, Zendehboudi S. A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. The Canadian Journal of Chemical Engineering. 2018;97(1):281-309. https://doi.org/10.1002/cjce.23336
Piacentini E. Emulsion. Encyclopedia of Membranes2016. p. 679-82. https://doi.org/10.1007/978-3-662-44324-8_1066
Maa YF, Hsu C. Liquid-liquid emulsification by rotor/stator homogenization. J Control Release. 1996;38:219-28. https://doi.org/10.1016/0168-3659(95)00123-9
Wang S, Li Q-S, Li Z, Su M-G. Solubility of Xylitol in Ethanol, Acetone,N,N-Dimethylformamide, 1-Butanol, 1-Pentanol, Toluene, 2-Propanol, and Water. Journal of Chemical & Engineering Data. 2007;52(1):186-8. https://doi.org/10.1021/je060348v
Saihi D, Vroman I, Giraud S, Bourbigot S. Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. Reactive and Functional Polymers. 2006;66(10):1118-25. https://doi.org/10.1016/j.reactfunctpolym.2006.02.001
Leiva J, Geffroy E. Evolution of the Size Distribution of an Emulsion under a Simple Shear Flow. Fluids. 2018;3(3). https://doi.org/10.3390/fluids3030046
Pensé AM, Vauthier C, Puisieux F, Benoit JP. Microencapsulation of benzalkonium chloride. International Journal of Pharmaceutics. 1992;81(2-3):111-7. https://doi.org/10.1016/0378-5173(92)90002-J
Schmidts T, Schlupp P, Gross A, Dobler D, Runkel F. Required HLB Determination of Some Pharmaceutical Oils in Submicron Emulsions. J Disper Sci Technol. 2012;33(6):816-20. https://doi.org/10.1080/01932691.2011.584800
Attaei M, Loureiro MV, Do Vale M, Condeco JAD, Pinho I, Bordado JC, et al. Isophorone Diisocyanate (IPDI) Microencapsulation for Mono-Component Adhesives: Effect of the Active H and NCO Sources. Polymers (Basel). 2018;10(8). https://doi.org/10.3390/polym10080825
Raaijmakers MJT, Benes NE. Current trends in interfacial polymerization chemistry. Prog Polym Sci. 2016;63:86-142. https://doi.org/10.1016/j.progpolymsci.2016.06.004
Gaudin F, Sintes-Zydowicz N. Correlation between the polymerization kinetics and the chemical structure of poly(urethane-urea) nanocapsule membrane obtained by interfacial step polymerization in miniemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012;415:328-42. https://doi.org/10.1016/j.colsurfa.2012.09.040
Shao J, Yu C, Bian F, Zeng Y, Zhang F. Preparation and Properties of Hydrophilic Rosin-Based Aromatic Polyurethane Microspheres. ACS Omega. 2019;4(2):2493-9. https://doi.org/10.1021/acsomega.8b03334
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.