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Abstract: In solving complex water resources management (WRM) problems, it can prove preferable to create 
numerous quantifiably good alternatives that provide multiple, disparate perspectives. This is because WRM normally 
involves multifaceted problems that are riddled with incompatible performance objectives and contain inconsistent design 
requirements, which are very difficult to quantify and capture when supporting decisions must be constructed. By 
producing a set of options that are maximally different from each other in terms of their unmodelled variable structures, it 
is hoped that some of these dissimilar solutions may convey very different perspectives that may serve to address these 
unmodelled objectives. In environmental planning, this maximally different option production procedure is referred to as 
modelling-to-generate-alternatives (MGA). In addition, many components of WRM problems possess extensive 
stochastic uncertainty. This study provides a firefly algorithm-driven simulation-optimization approach for MGA that can 
be used to efficiently create multiple solution alternatives to problems containing significant stochastic uncertainties that 
satisfy required system performance criteria and yet are maximally different in their decision spaces. This algorithmic 
approach is both computationally efficient and simultaneously produces a prescribed number of maximally different 
solution alternatives in a single computational run of the procedure. The effectiveness of this stochastic MGA approach 
for creating alternatives in “real world”, environmental policy formulation is demonstrated using a WRM case study. 
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1. INTRODUCTION 

Water resource managers have been confronted by 
water allocation problems for many decades [1, 2]. 
Implementing effective water resources management 
(WRM) has proven to be both notoriously contentious 
and conflict- laden as the inherent antagonism between 
multiple municipal, industrial and agricultural water-
users has intensified. Increased population shifts and 
shrinking water supplies have further aggravated the 
inter-user challenges. These antagonisms provoke 
additional aggravations when natural conditions 
become more unpredictable due to changing climatic 
conditions and as concern for water quantity and 
quality grows. Poorly-planned water allocation systems 
can deteriorate into more serious conflicts under 
detrimental river-flow and climatic conditions. In the 
past, increasing demand for water was met by the 
development of new water sources. However, 
significant economic and environmental costs 
associated with developing new water sources have 
rendered this approach unsustainable. The unlimited 
expansion of water sources is no longer the primary 
objective in WRM. Instead, for optimum water resource 
allocation, it is desired to improve the existing water 
allocation and management in a more equitable, 
environmentally-benign, and efficient manner by 
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fashioning environmental policy formulation techniques 
for water allocation under various complexities. Such 
innovative environmental policy formulation can be 
extremely problematic, as many components of water 
systems contain substantial degrees of uncertainty. 
The prevalence of stochastic uncertainty renders most 
common decision approaches relatively unsuitable for 
practical implementation. 

Since problems of WRM management generally 
possess all of the characteristics associated with 
environmental planning, WRM systems have provided 
an ideal backdrop for the testing of a wide spectrum of 
decision support techniques used in environmental 
decision-making [3-5]. WRM decision-making 
frequently involves complex problems that possess 
design requirements which are very difficult to 
incorporate into any supporting modelling formulations 
and tends to be plagued by various unquantifiable 
components [6-13]. Numerous objectives and system 
requirements readily exist that can never be 
unambiguously captured during the problem 
formulation stage [14, 15]. This commonly occurs in 
“real world” situations where final decisions must be 
constructed based not only upon clearly articulated 
specifications, but also upon environmental, political 
and socio-economic objectives that are either 
fundamentally subjective or not clearly articulated  
[16-18]. 
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Moreover, in public policy formulation, it may never 
be possible to explicitly convey many of the subjective 
considerations because there are numerous 
competing, adversarial stakeholder groups holding 
diametrically opposed perspectives. Therefore many of 
the subjective aspects remain unknown, unquantified 
and unmodelled in the construction of any correspond-
ing decision models. WRM policy formulation can prove 
even more complicated when the various system 
components also contain considerable stochastic 
uncertainties [19, 20]. Consequently, WRM policy 
determination proves to be an extremely challenging 
and complicated undertaking [10, 21, 22]. 

Various ancillary mathematical modelling app-
roaches have been proposed to support environmental 
policy formulation (see, for example: [4, 7, 11, 14, 23-
25]. However, while mathematically optimal solutions 
may provide the best answers to these modelled 
formulations, they generally do not supply the best 
solutions to the underlying real problems as there are 
invariably unmodelled aspects not apparent during the 
model construction phase [6, 10, 11, 21, 26-29]. 
Furthermore, although deterministic optimization-based 
techniques are designed to create single best 
solutions, the presence of the unmodelled issues 
coupled with the system uncertainties and opposition 
from powerful stakeholders can actually lead to the 
outright exclusion of any single (even an optimal) 
solution from further consideration [8, 9, 15, 18-20, 31-
33]. Under conflicting circumstances where no 
universally optimal solution exists, it has been stated 
that “there are no ideal solutions, only trade-offs” [34] 
and several underlying behavioural characteristics 
adopted by decision-makers when faced with such 
difficulties are outlined in [26]. 

Within WRM decision-making, there are routinely 
many stakeholder groups holding completely 
incongruent standpoints, essentially dictating that 
policy-makers need to construct decision frameworks 
that can somehow simultaneously consider numerous 
irreconcilable points of view [8, 9, 14, 20, 33, 35, 36]. In 
general, it is considered advantageous to be able to 
generate a reasonably judicious number of very 
different alternatives that provide multiple, contrasting 
perspectives to the specified problem [13, 33, 37-39]. 
These alternatives should preferably all possess near-
optimal objective measures with respect to all of the 
modelled objective(s) that are known to exist, but be as 
fundamentally different from each other as possible in 
terms of the system structures characterized by their 
decision variables. By generating such a diverse set of 

solutions, it is hoped that at least some of the dissimilar 
alternatives can be used to address the requirements 
of the unknown or unmodelled criteria to varying 
degrees of stakeholder acceptability. Several 
approaches collectively referred to as modelling-to-
generate-alternatives (MGA) have been developed in 
response to this multi-solution creation requirement 
[17, 18, 21, 24, 25, 29, 38-43]. 

MGA techniques employ a methodical examination 
of the solution space in order to generate a set of 
alternatives that are considered good when measured 
within the modelled objective space while being 
maximally different from each other in the decision 
space. The resulting alternatives provide a set of 
diverse approaches that all perform similarly with 
respect to the known modelled objectives, yet very 
differently with respect to any unmodelled issues [13, 
43]. Subsequently the policy-makers must conduct 
comprehensive evaluations of these alternatives to 
determine which options more closely placate their 
particular circumstances. Thus, a good MGA process 
should enable a thorough exploration of the decision 
space for good solutions while simultaneously allowing 
for unmodelled objectives to be considered when 
making final decisions. Consequently, unlike the more 
customary practice of explicit solution determination 
inherent in most “hard” optimization methods of 
mathematical programming, MGA approaches must 
necessarily be considered as decision support 
processes. 

Deterministic MGA methods are comparatively 
unsuitable for most WRM policy formulation, since the 
components of most WRM systems possess 
considerable stochastic uncertainty [11, 14, 19, 28, 30, 
31, 35, 44-46]. Yeomans et al. [47] integrated 
stochastic uncertainty directly into planning using an 
approach referred to as simulation-optimization (SO). 
SO is a family of optimization techniques that 
incorporates inherent stochastic uncertainties 
expressed as probability distributions directly into its 
computational procedure [48-50]. To address the 
deficiencies in deterministic MGA methods, Yeomans 
[36] demonstrated that SO could be used to generate 
multiple alternatives which simultaneously incorporated 
stochastic uncertainties directly into each generated 
option. Since computational aspects can negatively 
impact SO’s optimization capabilities, these difficulties 
clearly also extend into its use as an MGA procedure 
[7, 20]. Linton et al. [4] and Yeomans [20] have shown 
that SO can be considered an effective, though very 
computationally intensive, MGA technique for policy 
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formulation. Furthermore, none of these SO-based 
approaches could ensure that the created alternatives 
were sufficiently different in decision variable structure 
from one another to be considered an effective MGA 
procedure. 

In this study, a stochastic MGA procedure is 
described that efficiently generates sets of maximally 
different solution alternatives by executing an revised 
form of the nature-inspired Firefly Algorithm (FA) [5, 51, 
52] combined with a co-evolutionary MGA approach [3, 
53-57]. Yang [51] has demonstrated that the FA is a 
more computationally efficient procedure than such 
commonly used metaheuristics as enhanced particle 
swarm optimization, genetic algorithms, and simulated 
annealing. The FA-driven stochastic MGA procedure 
extends the deterministic approaches in [53-56] by 
advancing the FA into SO for stochastic optimization 
and by exploiting the concept of co-evolution within the 
FA’s solution methods to concurrently generate the 
requisite number of solution alternatives (see [3, 57]. 
Remarkably, this innovative algorithm can 
simultaneously generate the overall optimal solution 
together with n maximally different, locally optimal 
alternatives in a single computational run. Hence, the 
stochastic FA-driven procedure is computationally 
efficient for MGA purposes. Using the solution 
generation framework employed in [57], the 
effectiveness of this method for WRM purposes is 
demonstrated using a case study taken from [1] and 
[2]. More significantly, the practicality of this stochastic 
MGA FA-driven approach can quite easily be modified 
to many other stochastic planning systems and, 
therefore, can be readily adapted to address numerous 
other applications. 

2. MODELLING TO GENERATE ALTERNATIVES 

Most mathematical programming algorithms 
appearing in the optimization literature have con-
centrated almost exclusively on producing single best 
solutions for single-objective formulations or, 
equivalently, generating noninferior solutions for multi-
objective problems [10, 13, 17, 43]. While such 
techniques may efficiently generate solutions to the 
derived complex mathematical models, whether these 
outputs actually establish “best” approaches to the 
underlying real problems has been called into question 
[6, 10, 17, 21]. In most “real world” decision-making 
situations, there are numerous system objectives and 
requirements that are never explicitly included or 
apparent during the problem formulation [6, 13]. 
Furthermore, it may never be possible to explicitly 

express all of the subjective components because 
there are frequently numerous incompatible, com-
peting, design requirements and, perhaps, adversarial 
stakeholder groups involved [9, 14, 37]. Therefore, 
most subjective aspects of a problem remain 
unquantified and unmodelled in the resultant decision 
models. This is a common occurrence in situations 
where final decisions are constructed based not only 
upon clearly stated and modelled objectives, but also 
upon more fundamentally subjective socio-political-
economic goals and stakeholder preferences [37-39]. 
Several “real world” examples highlighting these types 
of incongruent modelling dualities in environmental 
decision-making are described in [17, 18] and [21]. 

When unmodelled objectives and unquantified 
issues exist, unconventional approaches are needed 
that not only explore the decision space for noninferior 
sets of solutions, but also examine the decision space 
for discernibly inferior alternatives to the modelled 
problem. In particular, any search for good alternatives 
to problems known or suspected to contain unmodelled 
objectives must focus not only on the non-inferior 
solution set, but also necessarily on an explicit 
exploration of the formulation’s entire inferior feasible 
region. 

To illustrate the implications of an unmodelled 
objective on a decision search, assume that the optimal 
solution for a quantified, single-objective, maximization 
decision problem is X* with corresponding objective 
value Z1*. Now suppose that there exists a second, 
unmodelled, maximization objective Z2 that 
subjectively reflects some unquantifiable component 
such as “political acceptability”. Let the solution Xc, 
belonging to the noninferior, 2-objective set, represent 
a potential best compromise solution if both objectives 
could somehow have been simultaneously evaluated 
by the decision-maker. While Xc might be viewed as 
the best compromise solution to the real problem, it 
would appear inferior to the solution X* in the quantified 
mathematical model, since it must be the case that Z1c 
!Z1*. Consequently, when unmodelled objectives are 
factored into the decision-making process, mathe-
matically inferior solutions for the modelled problem 
can prove optimal to the underlying real problem [38-
57]. 

Therefore, when unquantified issues and 
unmodelled objectives could exist, unorthodox methods 
are employed to not only search the decision space for 
noninferior sets of solutions, but also to simultaneously 
explore the decision space for inferior alternative 
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solutions to the modelled problem. Population-based 
search techniques such as the FA permit concurrent 
examinations throughout a decision space and prove to 
be particularly adept at searching throughout the 
problem’s feasible region. 

The principal objective underlying MGA is to 
produce a manageably small set of alternatives that are 
quantifiably good with respect to the known modelled 
objective(s) yet are as different as possible from each 
other within the decision space. In doing this, the 
resulting solution set is likely to provide truly different 
alternatives that all perform somewhat similarly with 
respect to the modelled objective(s) yet very differently 
with respect to any unknown unmodelled issues. By 
generating a set of good-but-different solutions, the 
decision-makers can explore desirable qualities within 
the alternatives that may prove to satisfactorily address 
the various unmodelled objectives to varying degrees 
of stakeholder acceptability. 

To suitably motivate an MGA procedure, it is 
necessary to apply a more mathematically formal 
definition to the goals of the MGA process [21, 37, 39].  
Suppose the optimal solution to an original 
mathematical model is X* with objective value Z* = 
F(X*). The following maximal difference model, 
subsequently referred to in the paper as problem [P1], 
can then be solved to generate an alternative solution 
that is maximally different from X*:  

  
Maximize ! = Xi " Xi

*
i#        (A1) 

Subject to:        X !  D 

| F(X) - Z* | !  T 

where !  represents some difference function (for 
clarity, shown as an absolute difference in this 
instance), D is the original mathematical model’s 
feasible domain and T is a targeted tolerance value 
specified relative to the problem’s original optimal 
objective Z*. T is a user-supplied target that effectively 
designates how much of the inferior region is to be 
explored in the search for acceptable alternative 
solutions. 

3. FIREFLY ALGORITHM FOR FUNCTION 
OPTIMIZATION 

While this section provides only an abridged 
description of the FA procedure, more detailed 
explanations appear in [3] and [51-57]. The FA is a 
population-based, nature-inspired metaheuristic. Each 

firefly in the population represents one potential 
solution to a problem and the population of fireflies 
should initially be distributed randomly and uniformly 
throughout the solution space. All FA solution 
procedures employ three specific rules: (i) The fireflies 
within a population are unisex, so that one firefly will be 
attracted to other fireflies irrespective of their sex; (ii) 
Attractiveness between any two fireflies is proportional 
to their brightness, implying that the less bright firefly 
will move towards the brighter one; and (iii) The explicit 
brightness of any firefly is explicitly determined by the 
corresponding value of its objective function. For 
maximization problems, the brightness can be 
considered proportional to the value of the objective 
function. Based upon these three rules, the basic 
operational steps of the FA can be summarized within 
the pseudo-code of Figure 1 [52].  

 
Figure 1: Pseudo Code of the Firefly Algorithm. 

There are two important requirements that must be 
determined for the FA: (i) the variation of light intensity 
and (ii) the formulation of attractiveness. Without loss 
of generality, it can always be assumed that the 
attractiveness of a firefly is determined by its brightness 
which in turn is associated with the encoded objective 
function. In the simplest case, the brightness of a firefly 
at a particular location X would be its calculated 
objective value F(X). However, the attractiveness, β, 
between fireflies is relative and will vary with the 
distance rij between firefly i and firefly j. In addition, light 
intensity decreases with the distance from its source, 
and light is also absorbed in the media, so the 
attractiveness needs to vary with the degree of 
absorption. Consequently, the overall attractiveness of 
a firefly can be defined as; 

 β = β0 exp(-γ r2)         (A2) 
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where β0 is the attractiveness at distance r = 0 and γ  is 
the fixed light absorption coefficient for the specific 
medium. If the distance rij between any two fireflies i 
and j located at Xi and Xj, respectively, is calculated 
using the Euclidean norm, then the movement of a 
firefly i that is attracted to another more attractive (i.e. 
brighter) firefly j is determined by; 

Xi = Xi + β0 exp(-γ(rij)2)(Xi – Xj) + αε i .      (A3) 

In this expression of movement, the second term is 
due to the relative attraction and the third term is a 
randomization component. Yang [52] indicates that α  is 
a randomization parameter normally selected within the 
range [0,1] and ε I is a vector of random numbers drawn 
from either a Gaussian or uniform (generally [-0.5, 0.5]) 
distribution. It should be explicitly noted that this 
expression represents a random walk biased toward 
brighter fireflies and if β0 = 0, it becomes a simple 
random walk. The parameter γ characterizes the 
variation of the attractiveness and its value determines 
the speed of the algorithm’s convergence. For most 
applications, γ   is typically set between 0.1 to 10  
[52, 58]. 

In any given optimization problem, for a very large 
number of fireflies n >> k, where k is the number of 
local optima, the initial locations of the n fireflies should 
be distributed relatively uniformly throughout the entire 
search space. As the FA proceeds, the fireflies begin to 
converge into all of the local optima (including the 
global ones). Hence, by comparing the best solutions 
among all these optima, the global optima can easily 
be determined. Yang [51] proves that the FA will 
approach the global optima when n à !  and the 
number of iterations t, is set so that t >>1. In reality, the 
FA has been found to converge extremely quickly with 
n set in the range 20 to 50 [51, 58]. 

Two important limiting or asymptotic cases occur 
when γ à 0 and when γ à ! . For γ à 0, the 
attractiveness is constant β = β0, which is equivalent to 
having a light intensity that does not decrease. Thus, a 
firefly would be visible to every other firefly anywhere 
within the solution domain. Hence, a single (usually 
global) optima can easily be reached. If the inner loop 
for j in Figure 1 is removed and Xj is replaced by the 
current global best G*, then this implies that the FA 
reverts to a special case of the accelerated particle 
swarm optimization (PSO) algorithm. Subsequently, the 
computational efficiency of this special FA case is 
equivalent to that of enhanced PSO. Conversely, when 
γ à ! , the attractiveness is essentially zero along the 

sightline of all other fireflies. This is equivalent to the 
case where the fireflies randomly roam throughout a 
very thick foggy region with no other fireflies visible and 
each firefly roams in a completely random fashion. This 
case corresponds to a completely random search 
method. As the FA operates between these two 
asymptotic extremes, it is possible to adjust the 
parameters α and γ so that the FA can outperform both 
a random search and the enhanced PSO  
algorithms [36]. 

The computational efficiencies of the FA will be 
exploited in the subsequent MGA solution approach. 
As noted, between the two asymptotic extremes, the 
population in the FA can determine both the global 
optima as well as the local optima concurrently. The 
concurrency of population-based solution procedures 
holds huge computational and efficiency advantages 
for MGA [38, 39]. An additional advantage of the FA for 
MGA implementation is that the different fireflies 
essentially work independently of each other, implying 
that FA procedures are better than genetic algorithms 
and PSO for MGA because the fireflies will tend to 
aggregate more closely around each local optimum 
[52, 58]. Consequently, with a judicious selection of 
parameter settings, the FA can be made to 
simultaneously converge extremely quickly into both 
local and global optima [51, 52, 58]. 

4. A SIMULATION-OPTIMIZATION APPROACH FOR 
STOCHASTIC OPTIMIZATION 

The optimization of large stochastic problems 
proves to be very complicated when numerous system 
uncertainties have to be incorporated directly into the 
solution procedures [48-50, [57]. SO is a broadly 
defined family of stochastic solution approaches that 
combines simulation with an underlying optimization 
component for optimization [48]. In SO, all unknown 
objective functions, constraints, and parameters are 
replaced by discrete event simulation models in which 
the decision variables provide the settings under which 
the simulation is performed. While SO holds 
considerable potential for solving a wide range of 
difficult stochastic problems, it cannot be considered a 
panacea because of its accompanying processing time 
requirements [48, 49]. 

The general process of SO can be summarized in 
the following way [49, 57]. Suppose the mathematical 
representation of the optimization problem possesses n 
decision variables, Xi, expressed in vector format as 
X = [X1, X2 , … , Xn ] . If the problem’s objective function 
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is designated by F and its feasible region is 
represented by D, then the related mathematical 
programming problem is to optimize F(X) subject to X 
! D. When stochastic conditions exist, values for the 
constraints and objective are determined by simulation. 
Thus, any direct solution evaluation between two 
distinct solutions X1 and X2 requires the comparison of 
some statistic of F modelled with X1 to the same 
statistic modelled with X2 [20, 48]. These statistics are 
calculated by a simulation performed on the solutions, 
in which each candidate solution provides the decision 
variable settings in the simulation. While simulation 
presents a mechanism for comparing results, it does 
not provide the means for determining optimal solutions 
to problems. Hence, simulation, by itself, cannot be 
used as a stochastic optimization procedure. 

Since all measures of system performance in SO 
are stochastic, every potential solution, X, must be 
determined through simulation. Because simulation is 
computationally intensive, an optimization algorithm is 
employed to guide the search for solutions through the 
problem’s feasible domain in as few simulation runs as 
possible [20, 50]. As stochastic system problems 
frequently contain numerous potential solutions, the 
quality of the final solution could be highly variable 
unless an extensive search has been performed 
throughout the problem’s entire feasible region. 
Population-based metaheuristic such as the FA are 
conducive to these extensive searches because the 
complete set of candidate solutions maintained in their 
populations permit searches to be undertaken 
throughout multiple sections of the feasible region, 
concurrently. 

An FA-directed SO approach contains two 
alternating computational phases; (i) an “evolutionary 
phase” directed by the FA module and (ii) a simulation 
module [5]. As described earlier, the FA maintains a 
population of candidate solutions throughout its 
execution. The evolutionary phase evaluates the entire 
current population of solutions during each generation 
of the search and evolves from the current population 
to a subsequent one. Because of the system’s 
stochastic components, all performance measures are 
necessarily statistics calculated from the responses 
generated in the simulation module. The quality of each 
solution in the population is found by having its 
performance criterion, F, evaluated in the simulation 
module. After simulating each candidate solution, their 
respective objective values are returned to the 
evolutionary FA module to be utilized in the creation of 
the ensuing population of candidate solutions. 

A primary characteristic of FA procedures is that 
better solutions in a current population possess a 
greater likelihood for survival and progression into the 
subsequent population. Thus, the FA module advances 
the system toward improved solutions in subsequent 
generations and ensures that the solution search does 
not become trapped in some local optima. After 
generating a new candidate population in the FA 
module, the new solution set is returned to the 
simulation module for comparative evaluation. This 
alternating, two-phase search process terminates when 
an appropriately stable system state (i.e. an optimal 
solution) has been attained. The optimal solution 
produced by the procedure is the single best solution 
found over the course of the entire search [5]. 

5. FA-DRIVEN SO ALGORITHM FOR STOCHASTIC 
MGA 

Linton et al. [4] and Yeomans [20] have shown that 
SO can be used as a computationally intensive, 
stochastic MGA technique and these approaches have 
been applied to WRM problems [59-62]. Because of 
the very long computational runs, Yeomans [63] 
subsequently examined several approaches to 
accelerate the search times and solution quality of SO 
(see also [64]). This section parallels the framework of 
[57] in describing an FA-driven MGA method (see [5]) 
that incorporates stochastic uncertainty using SO to 
much more efficiently generate sets of maximally 
different solution alternatives.  

The FA-driven stochastic MGA approach is 
designed to generate a pre-determined small number 
of close-to-optimal, but maximally different alternatives, 
by adjusting the value of T in [P1] and using the FA to 
solve each corresponding, maximal difference problem 
instance. This algorithm provides a stochastic exten-
sion to the deterministic approaches of [3, 55, 56]. By 
exploiting the co-evolutionary solution structure within 
the population of the FA, stratified subpopulations 
within the algorithm’s overall population are established 
as the Fireflies collectively evolve toward different local 
optima within the solution space. In this process, each 
desired solution alternative undergoes the common 
search procedure driven by the FA. However, the 
survival of solutions depends not only upon how well 
the solutions perform with respect to the modelled 
objective(s), but also by how far away they are from all 
of the other alternatives generated in the decision 
space. 
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A direct process for generating these alternatives 
with the FA would be to iteratively solve the maximum 
difference model [P1] by incrementally updating the 
target T whenever a new alternative needs to be 
produced and then re-running the algorithm. Such an 
iterative approach would parallel the seminal Hop, 
Skip, and Jump (HSJ) MGA algorithm of [17] in which, 
once an initial problem formulation has been optimized, 
supplementary alternatives are created one-by-one 
through a systematic, incremental adjustment of the 
target constraint to force the sequential generation of 
the suboptimal solutions. While this direct approach is 
straightforward, it is relatively computationally 
expensive as it requires a repeated execution of the 
specific optimization algorithm employed [37-39,  
53, 54]. 

In contrast, the concurrent FA-driven MGA 
approach is designed to generate the pre-determined 
number of maximally different alternatives within the 
entire population in a single run of the FA procedure 
(i.e. the same number of runs as if FA were used solely 
for function optimization purposes) and its efficiency is 
based upon the concept of co-evolution [53-56]. In this 
FA-driven co-evolutionary approach, pre-specified 
stratified subpopulation ranges within the FA’s overall 
population are established that collectively evolve the 
search toward the creation of the stipulated number of 
maximally different alternatives. Each desired solution 
alternative is represented by each respective 
subpopulation and each subpopulation undergoes the 
common processing operations of the FA. 

The FA-driven approach can be structured upon 
any standard FA solution procedure containing the 
appropriate encodings and operators that best 
correspond to the problem. The survival of solutions in 
each subpopulation depends simultaneously upon how 
well the solutions perform with respect to the modelled 
objective(s) and by how far away they are from all of 
the other alternatives. Consequently, the evolution of 
solutions in each subpopulation toward local optima is 
directly influenced by those solutions currently existing 
in all of the other subpopulations, which necessarily 
forces the concurrent co-evolution of each 
subpopulation towards good but maximally distant 
regions of the decision space. This co-evolutionary 
concept enables the simultaneous search for, and 
production of, the set of quantifiably good solutions that 
are maximally different from each other according to 
[P1] [39]. 

By employing this co-evolutionary concept, it 
becomes possible to implement an FA-driven MGA 

procedure that concurrently produces alternatives, 
which possess objective function bounds that are 
analogous, but inherently superior, to those created by 
a sequential HSJ-styled solution generation approach. 
While each alternative produced by an HSJ procedure 
is maximally different only from the single, overall 
optimal solution together with a bound on the objective 
value which is at least x% different from the best 
objective (i.e. x = 1%, 2%, etc.), the concurrent co-
evolutionary FA procedure is able to generate 
alternatives that are no more than x% different from the 
overall optimal solution but with each one of these 
solutions being as maximally different as possible from 
every other generated alternative that is produced. Co-
evolution is also much more efficient than a sequential 
HSJ-styled approach in that it exploits the inherent 
population-based searches of FA procedures to 
concurrently generate the entire set of maximally 
different solutions using only a single population. 
Specifically, while an HSJ-styled approach would need 
to run n different times in order to generate n different 
alternatives, the concurrent algorithm need run only 
once to produce its entire set of maximally different 
alternatives irrespective of the value of n. Hence, it is a 
much more computationally efficient solution 
generation process. 

The steps involved in the stochastic FA-driven co-
evolutionary MGA algorithm are as follows (see [57]): 

(1) Create the initial population stratified into P 
equally-sized subpopulations. P represents the 
desired number of maximally different alternative 
solutions within a prescribed target deviation 
from the optimal to be generated and must be 
set a priori by the decision-maker. Sp represents 
the pth subpopulation set of solutions, p = 1,…, P 
and there are K solutions contained within each 
Sp. Note that the target for each Sp could be a 
common deviation value (e.g. all P alternatives 
need to be within 10% of optimal) or the targets 
for each Sp could represent different selected 
increments (e.g. one alternative would need to 
be within 1% of optimal, another alternative 
would need to be within 2%, etc.). 

(2) Evaluate each solution in S1 using the simulation 
module and identify the best solution with 
respect to the modelled objective. S1 is the 
subpopulation dedicated to the search for the 
overall optimal solution to the modelled problem. 
The best solution residing in S1 is employed in 
establishing the benchmarks for the relaxation 
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constraints used to create the maximally different 
solutions as in P1. 

(3) Evaluate all solutions in Sp, p = 2,…,P, with 
respect to the modelled objective using the 
simulation module. Solutions meeting the target 
constraint and all other problem constraints are 
designated as feasible, while all other solutions 
are designated as infeasible. 

(4) Apply an appropriate elitism operator to each Sp 
to preserve the best individual in each 
subpopulation. In S1, this is the best solution 
evaluated with respect to the modelled objective. 
In Sp,  
p = 2,…, P, the best solution is the feasible 
solution most distant in decision space from all of 
the other subpopulations (the distance measure 
is defined in Step 7). Note: Because the best 
solution to date is always placed into each 
subpopulation, at least one solution in Sp will 
always be feasible. This step simultaneously 
selects a set of alternatives that respectively 
satisfy different values of the target T while being 
as far apart as possible (i.e. maximally different 
in the sense of [P1]) from the solutions 
generated in each of the other subpopulations. 
By the co-evolutionary nature of this algorithm, 
the alternatives are simultaneously generated in 
one pass of the procedure rather than the P 
implementations suggested by the necessary 
HSJ-styled increments to T in problem [P1]. 

(5) Stop the algorithm if the termination criteria 
(such as maximum number of iterations or some 
measure of solution convergence) are met. 
Otherwise, proceed to Step 6. 

(6) Identify the decision space centroid, Cip, for each 
of the K’ !  K feasible solutions within k = 1,…, K 
of Sp, for each of the N decision variables Xikp, i = 
1,…, N. Each centroid represents the N-
dimensional centre of mass for the solutions in 
each of the respective subpopulations, p. As an 
illustrative example for determining a centroid, 
calculate Cip = (1/K’)!

 k! Xikp. In this 

calculation, each dimension of each centroid is 
computed as the straightforward average value 
of that decision variable over all of the values for 
that variable within the feasible solutions of the 
respective subpopulation. Alternatively, a 
centroid could be calculated as some fitness-
weighted average or by some other appropriately 
defined measure. 

(7) For each solution k = 1,…, K, in each Sq, 
calculate Dkq, a distance measure between that 
solution and all other subpopulations. As an 
illustrative example for determining a distance 
measure, calculate Dkq = Min {

 i! | Xikp - Cip |; p 

= 1,…, P, p ! q}. This distance represents the 
minimum distance between solution k in 
subpopulation q and the centroids of all other 
subpopulations. Alternatively, the distance 
measure could be calculated by some other 
appropriately defined function.  

(8) Rank the solutions within each Sp according to 
the distance measure Dkq objective – app-
ropriately adjusted to incorporate any constraint 
violation penalties. The goal of maximal 
difference is to force solutions from one 
subpopulation to be as far apart as possible in 
the decision space from the solutions of each of 
the other subpopulations. This step orders the 
specific solutions in each subpopulation by those 
solutions which are most distant from the 
solutions in all of the other subpopulations. 

(9) In each Sp, apply the appropriate FA “change 
operations” to the solutions and return to Step 2. 

6. CASE STUDY OF WATER RESOURCES 
MANAGEMENT UNDER UNCERTAINTY 

As indicated throughout the previous sections, 
decision-makers faced with situations containing 
numerous uncertainties generally prefer to be able to 
select from a set of “near best” alternatives that differ 
significantly from each other in terms of the system 
structures characterized by their decision variables. 
The effectiveness of the FA-driven SO MGA procedure 
will be illustrated using the water resources 
management case taken from [1] and [2]. While this 
section briefly outlines the case, more extensive 
details, data, and descriptions can be found in [1, 2, 60-
62, 64]. 

[1] and [2] examined a water resources manage-
ment case study for allocating water in a dry season 
from an unregulated reservoir to three categories of 
users: (i) a municipality, (ii) an industrial concern, and 
(iii) an agricultural sector. The industrial concern and 
agricultural sector were undergoing significant expan-
sion and needed to know the quantities of water they 
could reasonably expect. If insufficient water were 
available, these entities would be forced to curtail their 
expansion plans. If the promised water was delivered, it 
would contribute positive net benefits to the local 
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economy per unit of water allocated. However, if the 
water was not delivered, the results would reduce the 
net benefits to the users. 

The major problems in these circumstances 
involved (i) how to effectively allocate water to the three 
user groups in order to achieve maximum net benefits 
under the uncertain conditions and (ii) how to 
incorporate the water policies in terms of allowable 
amounts within this planning problem with the least risk 
of system disruption. Included within these decisions is 
a determination of which one of the multiple possible 
pathways that the water would flow through in reaching 
the users. It is further possible to subdivide the various 
water streams with each resulting sub stream sent to a 
different user. Since cost differences from operating the 
facilities at different capacity levels produce economies 
of scale, decisions have to be made to determine how 
much water should be sent along each flow pathway to 
each user type. Therefore, any single policy option can 
be composed of a combination of many decisions 
regarding which facilities received water and what 
quantities of water would be sent to each user type. All 
of these decisions were compounded by overriding 
system uncertainties regarding the seasonal water 
flows and their likelihoods.  

Thus, the WRM case considers how to effectively 
allocate the water to the three user groups in order to 
derive maximum net benefits under the elements of 
uncertainty present and how to incorporate water 
policies in terms of allowable amounts within this 
planning problem with the least risk for causing system 
disruption. Since the uncertainties could be expressed 
collectively as interval estimates, probability distribu-
tions and uncertainty membership functions, the 
approach of [2] was used to show how to improve upon 
the earlier efforts of [1] by providing a solution for the 
WRM problem with a net benefit of $2.02 million. 

6.1. Mathematical Model for The WRM Planning 
Case 

This section briefly describes the stochastic 
programming method that [2] formulated to solve the 
WRM planning case. In the formulation, penalties are 
imposed when policies that have been expressed as 
targets are violated. Also within the model, any 
uncertain parameter A is represented by  A±  and its 
corresponding values are generated via probability 
distributions. More extensive details and descriptions of 
the model, and all of the underlying data for the 
parameter values, can be found in [1] and [2]. 

In the region studied, the municipal, industrial, and 
agricultural water demands have been increasing due 
to population and economic growth. Because of this, it 
is necessary to ensure that the different water users 
know where they stand by providing information that is 
needed to make decisions for various activities and 
investments. For example, farmers who know there is 
only a small chance of receiving sufficient water in a 
dry season are not likely to make major investment in 
irrigation infrastructure. Similarly, industries are not 
likely to promote developments of projects that are 
water intensive knowing that they will have to limit their 
water consumption. If the promised water cannot be 
delivered due to insufficiency, the users will have to 
either obtain water from more expensive alternate 
sources or curtail their development plans. For 
example, municipal residents may have to curtail 
watering of lawns, industries may have to reduce 
production levels or increase water recycling rates, and 
farmers may not be able to conduct irrigation as 
planned. These impacts will result in increased costs or 
decreased benefits in relation to the regional 
development. It is thus desired that the available water 
be effectively allocated to minimize any associated 
penalties. Thus, the problem can be formulated as 
maximizing the expected value of the net system 
benefits. Based upon the local water management 
policies, a quantity of water can be pre-defined for each 
user. If this quantity is delivered, it will result in net 
benefits; however, if not delivered, the system will then 
be subject to penalties. 

The WRM authority is responsible for allocating 
water to each of the municipality, the industrial 
concerns, and the agricultural sector. As the quantity of 
stream flows from the reservoir are uncertain, the 
problem is formulated as a stochastic programming 
problem. This stochastic programming model can 
account for the uncertainties in water availability. 
However, uncertainties may also exist in other 
parameters such as benefits, costs and water-
allocation targets. To reflect all of these uncertainties, 
the following stochastic programming model was 
constructed by [2]: 

Max f ± = Bi
±Wi

±

i=1

m

! " pjCi
±Sij

±

j=1

n

!
i=1

m

!        (A4) 
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± ! Sij

±( )
i=1

m

" # qj
±   ! j  
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Sij
± !Wi

± !Wimax
±   ! i  

Sij
± ! 0    ! i, j  

In this formulation f ±  represents the net system 

benefit ($/m3) and Bi
±  represents the net benefit to 

user i per m3 of water allocated ($). Wi
±  is the fixed 

allocation amount (m3) for water that is promised to 
user i, while Wimax

±  is the maximum allowable amount 
(m3) that can be allocated to user i. The loss to user i 
per m3 of water not delivered is given by Ci

± , where Ci 

> Bi ($). Sij
±  corresponds to the shortage of water, 

which is the amount (m3) by which Wi is not met when 
the seasonal flow is qj. qj

±  is the amount (m3) of 
seasonal flow with pj probability of occurrence under j 
flow level, where pj provides the probability (%) of 
occurrence of flow level j. The variable i, i = 1, 2, 3, 
designates the water user, where i = 1 for municipal, 2 
for industrial, and 3 for agricultural. The value of j , j = 
1, 2, 3, is used to delineate the flow level, where j = 1 
represents low flows, 2 represents medium flows, and 
3 represents high flows. Finally, m is the total number 
of water users and n is the total number of flow levels. 

The developed formulation can provide results that 
are expressed as stable solutions with different risk 

levels within pre-established criteria [2]. This stochastic 
programming model holds two significant advantages 
in comparison to other optimization techniques that 
deal with uncertainties. Firstly, it enables the ability to 
reflect uncertainties expressed not only as probability 
distributions but also as possibility distributions. 
Secondly, it enables a linkage to be made with 
previously-existing or pre-defined policies that have to 
be respected whenever a modeling effort is 
undertaken. In this formulation, penalties are imposed 
when these policies, which are expressed as targets, 
are violated.  

6.2. Using the Co-Evolutionary MGA Method for 
The WRM Planning Case 

As outlined earlier, when public policy planners are 
faced with difficult and controversial choices, they 
generally prefer to be able to select from a set of near-
optimal alternatives that differ significantly from each 
other in terms of their system structures. In order to 
create these alternative planning options for the WRM 
system, it would be possible to place extra target 
constraints into the original model which would force 
the generation of solutions that were different from their 
respective, initial optimal solutions. Suppose for 
example that five additional planning alternative options 
were created through the inclusion of a technical 
constraint on the objective function that decreased the 
total system benefits of the original model from 2% up 
to 10% in increments of 2%. By adding these incre-
mental target constraints to the original SO model and 
sequentially resolving the problem 5 times, it would be 
possible to create a specific number of alternative 
policies for WRM planning. 

However, to improve upon the process of running 
five separate additional instances of the com-
putationally intensive SO algorithm to generate these 
solutions, the FA-driven MGA procedure described in 
the previous section was run only once, thereby 

producing the 5 additional alternatives shown in Table 
1. The table shows the overall system benefits for the 5 
maximally different options generated. Given the 
performance bounds established for the objective in 
each problem instance, the decision-makers can feel 
reassured by the stated performance for each of these 
options while also being aware that the perspectives 
provided by the set of dissimilar decision variable 
structures are as different from each other as is 
feasibly possible. Hence, if there are stakeholders with 
incompatible standpoints holding diametrically 
opposing viewpoints, the policy-makers can perform an 

Table 1: System Benefits ($ Millions) for 6 Maximally Different Alternatives 

Maximally Different Solutions WRM System Benefits ($ Millions) 

Best Solution Overall 2.021 

Best Solution Within 2% 1.987 

Best Solution Within 4% 1.946 

Best Solution Within 6% 1.915 

Best Solution Within 8% 1.872 

Best Solution Within 10% 1.840 
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assessment of these different options without being 
myopically constrained by a single overriding 
perspective based solely upon the objective value. 

Furthermore, it should also be explicitly noted that 
the objective values for the alternatives created do not 
differ from the highest benefit solution by at least the 
stated 2%, 4%, …, 10%, respectively, but, in general, 
actually differ by less than these pre-specified upper 
deviation limits. This is because each of the best 
alternatives produced in S2, S3, S4, S5, S6 have 
solutions whose structural variables differ maximally 
from those of all of the other alternatives generated 
while simultaneously guaranteeing that their objective 
values deviate from the overall best objective by no 
more than 2%, 4%,…, 10%, respectively. Thus, the 
goal of the alternatives generated in this MGA 
procedure are very different from those produced in the 
more straightforward HSJ-style, single-alternative-
generation approach, while simultaneously establishing 
much more robust guarantees on the solution quality.  

Although a mathematically optimal solution may not 
provide the best approach to the real problem, it can be 
demonstrated that the co-evolutionary procedure does 
indeed produce very good solution values to the 
originally modelled problem, itself. Table 1 clearly 
highlights how the alternative generated in S1 by the 
MGA procedure is “good” with respect to the optimal 
solution found in [2]. In fact, it should be explicitly noted 
that the overall best solution produced by the MGA 
procedure (i.e. the solution in S1) is actually identical to 
the one found by the function optimization approach of 
[2]. This is not mere coincidence because an 
expansion in the population size of the SO procedure 
to include the subpopulations S2, S3, …, S6 does not 
detract from its evolutionary capabilities to find the 
best, function optimization solution in subpopulation S1. 
Hence, in addition to its alternative generating 
capabilities, the MGA procedure simultaneously 
performs exceedingly well with respect to function 
optimization. 

In summary, the computational example highlights 
several important features with respect to the FA-driven 
simulation-optimization MGA technique: (i) An FA can 
be effectively employed as the underlying optimization 
search routine for SO routines; (ii) Because of the 
evolving nature of its population-based solution 
searches, the co-evolutionary capabilities within the FA 
can be exploited to simultaneously generate more good 
alternatives than planners would be able to create 
using other MGA approaches; (iii) By the design of the 

MGA algorithm, the alternatives generated are good for 
planning purposes since all of their structures are 
guaranteed to be as mutually and maximally different 
from each other as possible (i.e. these differences are 
not just simply different from the overall optimal 
solution as in an HSJ-style approach to MGA); (iv) The 
approach is very computationally efficient since it need 
only be run once to generate its entire set of multiple, 
good solution alternatives (i.e. to generate n maximally 
different solution alternatives, the MGA algorithm would 
need to be run exactly the same number of times that 
the FA would need to be run for function optimization 
purposes alone – namely once – irrespective of the 
value of n); and, (v) The best overall solutions 
produced by the MGA procedure will be identical to the 
best overall solutions that would be produced by the FA 
for function optimization purposes alone. 

CONCLUSIONS 

WRM decision-making problems contain multi-
faceted performance requirements which inevitably 
include complicated, incongruent performance 
objectives and unquantifiable modelling features. 
These problems often possess incompatible design 
specifications which are difficult – if not impossible – to 
capture when the supporting decision models are 
formulated. Consequently, there are unmodelled 
problem components, generally not apparent during 
model construction, that can significantly influence the 
acceptability of any model’s solutions. These 
competing and ambiguous components force WRM 
decision-makers to incorporate many conflicting 
requirements into their decision process prior to settling 
upon a final solution.  

Because of this, supplementary modelling 
techniques that support decision formulation must 
inherently capture the essence of these aspects while 
retaining sufficient flexibility to simultaneously consider 
the impacts from the planning and stochastic 
uncertainties. Rather than constructing exactly one, 
mathematically optimal solution, in these situations, it is 
more desirable to be able to generate a set of provably 
good options that provide distinctive perspectives to 
any potentially unmodelled issues. The distinctive 
structures captured by these dissimilar alternatives 
reflect very different system features, thereby 
addressing some of the unmodelled issues during the 
policy formulation stage. 

This study has provided a stochastic FA-driven 
MGA approach that demonstrated how the co-
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evolutionary features of the FA could be employed to 
direct a stochastic SO search process to concurrently 
generate a set of maximally different, near-optimal 
alternatives. This stochastic MGA method creates 
several solutions containing the requisite problem 
features, with each alternative generated providing a 
very different perspective to the problem considered. 
The practicality of this FA-driven stochastic MGA 
approach can clearly be extended into numerous 
disparate environmental applications and can be 
readily modified to many other “real world” planning 
situations. Such extensions will be examined in 
forthcoming research initiatives. 
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