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ABSTRACT 

Quantum workloads are increasingly delivered through cloud platforms, yet emerging 

quantum data centers face a distinctive energy challenge: facility power is often dominated 

by cryogenic cooling systems and auxiliary infrastructure rather than by compute alone. This 

study proposes a carbon-aware co-optimization framework for green quantum data centers 

that jointly integrates deadline-aware workload scheduling with dynamic cooling setpoint 

control. In contrast to prior studies that typically consider scheduling and thermal 

management independently largely in classical data-center environments the proposed 

framework evaluates their combined effects on facility-level energy consumption, operational 

carbon emissions, and fairness across tenants within an end-to-end simulation tailored to 

quantum infrastructure, where cooling setpoints strongly influence cryogenic efficiency. A 

simplified quantum data-center model with temperature-dependent cooling efficiency is 

developed, together with heterogeneous quantum job arrivals characterized by runtimes, 

priorities, and deadlines. Time-varying carbon-intensity and ambient-temperature signals are 

incorporated to emulate renewable-driven grid dynamics. Carbon-aware scheduling 

supports both flexible and strict deferral policies that shift eligible jobs toward lower-carbon 

periods while respecting deadline constraints. In parallel, a lightweight model predictive 

control strategy enumerates feasible cooling setpoint trajectories to minimize predicted 

facility energy use subject to temperature bounds and ramp-rate limits. Performance is 

evaluated across multiple random seeds, with uncertainty quantified using confidence 

intervals and statistical significance assessed via bootstrap testing. Simulation results show 

that MPC-based cooling control reduces total facility energy consumption by approximately 

9% relative to a fixed-setpoint baseline. Carbon-aware job deferrals provide additional 

emissions reductions ranging from several percent to double-digit values depending on 

deferral aggressiveness, with explicitly quantified trade-offs in waiting time and SLA 

violations. Fairness impacts are assessed using Jain’s index, the Gini coefficient, and per-class 

waiting times. A publicly reproducible implementation is provided to support validation and 

future extensions to higher-fidelity quantum facility and workload models. 
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1. Introduction 

Cloud-based access to quantum processing units (QPUs) is moving from laboratory prototypes to early 

commercial services, creating a new class of quantum data centers [1-3]. These facilities must maintain extremely 

low-temperature environments and stable thermal conditions, often via complex cryogenic and cooling plants. As 

a result, facility power—cryostats, chillers, pumps, and air-handling units—can dominate total energy 

consumption, in contrast to conventional cloud sites where IT power typically drives the bill [4-6]. 

In parallel, electricity grids are decarbonizing through large-scale integration of intermittent renewables such 

as solar and wind. Grid carbon intensity varies substantially over time and geography, a fact exploited by recent 

carbon-aware computing systems that shift flexible workloads to greener hours or locations while protecting SLAs 

for latency-critical tasks [7-11]. Quantum workloads, with their mix of calibration-heavy, latency-tolerant, and 

latency-sensitive jobs, are potentially well suited to such temporal shaping [1, 2]. 

Despite rapid progress in carbon-aware scheduling for classical data centers, there is relatively little end-to-end 

work that jointly models (i) carbon-aware job deferrals, (ii) queueing and SLA metrics, and (iii) facility energy in a 

quantum context [12, 13]. Accurate facility modeling is especially important for cryogenic systems, where cooling 

setpoints and partial-load behavior strongly influence energy use [1, 2, 4-6]. At the same time, sustainable 

operation should consider fairness across tenants and job classes; for example, carbon-aware deferrals should 

not systematically degrade quality of service for low-priority users [14-16]. 

This paper addresses these gaps by constructing and evaluating a Green Quantum Data Center (GQDC) control 

loop that couples a carbon-aware scheduler with a lightweight model predictive facility controller. Fig. (1) shows 

the high-level architecture: carbon and price signals, workload arrivals, and ambient conditions feed a scheduling 

and control stack that outputs job start times and cooling setpoints; these drive a simulated facility model, which 

in turn produces energy, emissions, queueing, fairness, and cost key performance indicators (KPIs) [5, 8, 17]. 

We study the following questions:  

Q1.  How much can facility energy be reduced by optimizing cooling setpoints via MPC compared to a fixed 

setpoint? 

Q2.  To what extent can carbon-aware job deferrals reduce emissions, and what deferral intensity is required? 

Q3.  What are the trade-offs between energy/emissions, average wait time, SLA miss rate, and deferrals per 

job? 

Q4.  Are energy and emissions gains robust under high-load and heat-wave stress scenarios and across 

scheduler baselines (FIFO vs EDF)? 

1.1. Contributions 

The main contributions of this work are: 

(C1)  A reproducible GQDC simulator that couples quantum job scheduling, carbon-aware deferrals, and a 

reduced-order facility energy model with both linear and nonlinear COP options. 

(C2)  A comprehensive evaluation suite covering facility energy, emissions, queueing metrics, fairness across 

job classes (via Jain and Gini indices), FIFO vs EDF scheduler baselines, stress scenarios, and day–night 

energy cost. 

(C3)  Statistical analysis using cross-seed confidence intervals and a bootstrap hypothesis test for energy 

reduction. 

(C4)  Engineering artifacts: Python modules, experiment drivers, automatic figure/table generators, and 

Word/LaTeX builders, enabling one-click reconstruction of all results and manuscripts. 
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The rest of the paper is organized as follows. Section 2 reviews related work on carbon-aware computing, data 

center energy optimization, fairness, and forecasting. Section 3 introduces the GQDC system model, workloads, 

signals, scheduling and control policies, and metrics. Section 4 presents empirical results and discussion, including 

facility energy savings, emissions impacts, Pareto trade-offs, COP ablations, scheduler baselines, fairness, stress 

scenarios, cost analysis, and statistical significance. Section 5 concludes. 

 
Figure 1: System overview: a Green Quantum Data Center (GQDC) couples carbon and price signals, ambient conditions, and 

workload arrivals to a carbon-aware scheduler and model predictive controller (MPC) for cooling setpoints. The simulator 

produces energy, emissions, queueing, fairness, and cost metrics. 

2. Background and Related Work 

2.1. Energy and Carbon in Data Centers and Quantum Facilities 

Data centers are a rapidly growing electricity consumer, making energy efficiency and carbon reduction central 

design and operations objectives. Large-scale assessments have documented the magnitude of data-center 

electricity use and its evolution over time, motivating sustained work on improving facility efficiency and carbon 

performance [18, 19]. A significant portion of facility overhead arises from thermal management; consequently, 

temperature setpoint selection and cooling control are widely studied levers for reducing total facility energy [4, 5]. 

Recent reviews further emphasize that meaningful sustainability gains require integrated consideration of IT load, 

cooling dynamics, and facility-level performance metrics rather than IT-only optimizations [5, 6]. Carbon-aware 

scheduling and control Quantum computing facilities introduce additional, non-negligible infrastructure loads, 

particularly when quantum processing units (QPUs) rely on cryogenic environments (e.g., superconducting 

systems). Engineering studies on cryogenic setups highlight that cryogenic subsystems and auxiliary hardware 

become key contributors to total power as systems scale (1) Recent analyses of quantum platforms integrated into 

HPC environments similarly indicate that power and energy efficiency must be treated as first-class constraints for 

practical deployment (2) In addition, power delivery and distribution at cryogenic temperatures creates further 

system-level challenges that can impact overall facility efficiency (3) These considerations motivate facility-aware 

approaches that jointly manage workload execution and thermal/cryogenic overhead. 

2.2. Carbon-aware Scheduling and Control 

Carbon-aware computing exploits time-varying grid carbon intensity to reduce operational emissions by 

shifting flexible computation toward lower-carbon periods. A prominent example is Google’s carbon-intelligent 

compute management framework, which time-shifts eligible workloads while enforcing completion constraints [7]. 

Subsequent research has expanded this direction through data-driven selection of scheduling algorithms under 
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carbon signals [8], online low-carbon scheduling methods that explicitly connect workload decisions and energy 

dynamics [9], and carbon-aware orchestration across multi-cloud deployments and complex application structures 

[12, 20, 21]. From a power-systems perspective, data centers are also increasingly viewed as a source of flexibility, 

reinforcing the relevance of controllable computing loads as demand-side resources [14]. 

In parallel, systems work has proposed end-to-end frameworks and testbeds that enable carbon-aware system 

design and evaluation, including holistic carbon-aware data center design frameworks and experimental platforms 

for carbon-aware applications [10, 11]. While these studies focus primarily on classical cloud workloads, the same 

core idea—aligning compute and facility operation with cleaner electricity—extends naturally to quantum 

facilities. Our work follows this line of research but focuses on quantum workloads and explicitly couples carbon-

aware workload deferral with cooling setpoint control via a lightweight MPC loop. 

2.3. Fairness Metrics and Queueing Baselines 

Carbon-aware policies often introduce heterogeneous impacts across tenants or job classes because flexible 

workloads may be deferred more frequently than inflexible ones. Quantifying these effects requires fairness 

metrics that reflect how unevenly delay or service is distributed. Jain’s fairness index is a long-established measure 

for evaluating allocation equity in shared systems [14], and later work has highlighted limitations of relying on a 

single index, motivating complementary views of fairness and discrimination [15]. In performance-sensitive 

settings, fairness is also commonly evaluated through slowdown-based metrics that directly capture the user-

perceived penalty relative to a baseline service time [16]. In this study, fairness concerns arise because deferral 

decisions may systematically bias waiting times across job classes under carbon signals; we therefore evaluate 

standard fairness indices alongside queueing performance metrics.  

For scheduling baselines, first-in-first-out (FIFO) remains a canonical reference in batch and queueing systems, 

while non-preemptive earliest-deadline-first (EDF) is a standard deadline-aware policy and a common comparator 

when SLA constraints are present. We evaluate both FIFO and EDF to isolate the effects of carbon-aware deferral 

and facility control from baseline queue discipline. 

2.4. Forecasting and Carbon Signals 

Carbon-aware scheduling is most effective when carbon intensity is known or forecasted over the decision 

horizon. Carbon intensity is strongly influenced by renewable generation, and forecasting tools for solar irradiance 

and PV power are therefore directly relevant for anticipating low-carbon periods [20, 21]. Measurement quality 

and dataset characteristics also matter: evaluated irradiance products (e.g., NSRDB spectral irradiance) can exhibit 

systematic differences that propagate to forecast performance and downstream decisions [22]. For regions with 

limited historical data, recent work has explored forecasting approaches tailored to data-scarce environments, 

including prosumer PV and storage settings [23]. More broadly, operational carbon-aware systems increasingly 

rely on consistent carbon accounting and carbon-intensity time series; open-source and research datasets provide 

pathways for constructing such signals at high temporal resolution [24-27], while recent work has emphasized the 

accounting implications of temporal matching and related principles for green electricity claims [28-30]. 

In prior work, we developed a deep-learning pipeline (stacked LSTM) for short-term solar-power forecasting 

using PVGIS–SARAH3 data, showing improved accuracy over a persistence baseline in an operational forecasting 

setting [17]. In the present paper, we intentionally decouple forecasting quality from control-policy evaluation: we 

use a simplified sinusoidal-plus-noise carbon signal that emulates diurnal renewable-driven variation while 

ensuring full reproducibility and avoiding reliance on a specific region or provider. This allows the study to focus 

on (i) carbon-aware workload deferral and (ii) facility cooling control as the primary mechanisms shaping energy 

and emissions outcomes. 

3. Methods 

Fig. (2) summarizes the overall experimental workflow. Configuration parameters are specified in a YAML file, 

including workload characteristics, carbon and price signals, facility model coefficients, and MPC/search settings. 
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For each random seed, the simulator generates arrivals and signals, runs the scheduler and facility controller, and 

records per-job and per-interval metrics. Downstream scripts aggregate metrics across seeds, compute 

confidence intervals, run bootstrap tests, and generate figures, tables, and DOCX/LaTeX manuscripts. 

 

Figure 2: Evaluation workflow. A configuration file drives synthetic workload generation, signal synthesis (carbon, price, 

ambient), scheduling and facility control, and metric extraction. Post-processing scripts aggregate results, compute confidence 

intervals and bootstrap tests, and generate figures, tables, and manuscripts. 

3.1. System Model 

We consider a single-site GQDC comprising: 

a) An abstracted quantum compute cluster of QPUs, represented by job runtimes and an energy-proxy 

metric per job. 

b) A cryogenic load with approximately constant power (for a given QPU fleet) over the horizon. 

c) A cooling plant (chillers and auxiliary equipment) whose power depends on setpoint temperature, load 

fraction, ambient conditions, and economizer effectiveness. 

At time 𝑡, the facility power is modeled as 

 𝑃
fac(𝑡) = 𝑃IT(𝑡) + 𝑃cryo + 𝑃cool(𝑡)

,
 (1) 

where 𝑃IT(𝑡) is the IT/QPU power derived from the active jobs, 𝑃cryo is a constant cryostat power, and 𝑃cool(𝑡) is 

cooling power. We express cooling power in terms of a coefficient of performance (COP): 

 𝑃cool(𝑡)
𝑄𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑(𝑡)

COP(T𝑠𝑒𝑡 (𝑡),𝑇𝑎𝑚𝑏(𝑡),𝑓𝑙𝑜𝑎𝑑(𝑡))
  (2) 

We define the rejected heat rate as Q_rejected(t) = γ · (P_IT(t) + P_cryo), where γ ≥ 1 captures non-IT heat and 

auxiliary thermal loads that must be removed by the plant (tuned value γ = 1.09 in our experiments). 

We use two COP models: 

• Linear COP: an affine function of setpoint and ambient temperature, tuned so that typical COP values lie 

between approximately 2.3 at 6°C and 5.6 at 12°C. 

• Nonlinear COP: a saturating function of setpoint and partial load that yields higher efficiency at moderate 

loads and degrades outside an optimal band. This captures known nonlinearities in chiller behavior [11]. 
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Facility energy over the horizon is 

 𝐸𝑓𝑎𝑐  =  ∑ 𝑃𝑓𝑎𝑐𝑡 (𝑡) . Δt  (3) 

Here P_fac(t) is in kW and Δt is in hours, so E_fac is reported in kWh. 

3.2. Workloads and Arrival Process 

Quantum workloads are drawn from a small library of canonical circuits (e.g., QFT, Grover search, phase 

estimation, GHZ/BV state preparation, VQE variants). Each job is characterized by: 

• Arrival time 𝑎𝑗 (in minutes from the start of the horizon), 

• Runtime 𝑟𝑗 (in seconds), 

• An energy proxy 𝑒𝑗 (arbitrary units proportional to QPU activity), 

• A class label 𝑐𝑗 ∈ {normal, priority}, 

• An absolute deadline 𝑑𝑗 defining the SLA. 

Arrivals follow a diurnally modulated Poisson process with higher rates during business hours and lower rates 

at night, capturing the typical shape of interactive and batch quantum workloads. The default configuration yields 

a few hundred jobs over a 24 h horizon. Stress experiments scale the arrival rate to emulate high-load days. 

3.3. Signals: Carbon Intensity, Ambient Temperature, and Price 

Carbon intensity is modeled as a sinusoidal baseline plus noise: 

𝐶 (𝑡) = 𝐶base + 𝐶swing sin(𝜔𝑡 + 𝜙) + 𝜖𝑡, 

where 𝐶base is the mean intensity (default 650g CO2/kWh), 𝐶swing is the amplitude (default 400g CO2/kWh), 𝜔 

corresponds to a daily cycle, and 𝜖𝑡 is zero-mean noise. These parameters loosely emulate a grid with high solar 

penetration, where midday carbon intensity is low and evenings are more carbon intensive. 

Ambient temperature follows a similar sinusoid (baseline around 21.1°C with a 7.11°C swing), shifted to mimic 

day–night thermal cycles. A simple day–night electricity price with higher tariffs during peak hours is used for cost 

analysis. 

3.4. Schedulers and Deferral Policies 

We consider two non-preemptive schedulers: 

• FIFO: jobs are executed in order of arrival. 

• EDF: among jobs that have arrived and are not yet started, the one with the earliest absolute deadline is 

chosen. 

Both schedulers operate over the same generated arrivals and deadlines, producing a start time 𝑠𝑗 for each job 

and thus a completion time 𝑓𝑗 = 𝑠𝑗 + 𝑟𝑗. 

Carbon-aware policies introduce deferrals, where a job is intentionally delayed before starting in order to move 

its execution into a lower-carbon period. We distinguish two regimes: 

• Flexible policy: uses a relatively aggressive carbon threshold and allows up to eight deferral steps of four 

minutes each. When the forecasted carbon intensity over the next hour is significantly lower than the 

current value, the scheduler may defer the job, subject to its deadline. 
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• Strict policy: uses a tighter carbon threshold and a more conservative limit (e.g., at most one or two short 

deferrals), ensuring that most jobs still start near their earliest ready time. 

Both policies rely on a simple carbon forecast over a short horizon (e.g., 30–90 minutes) derived from the 

synthetic signal. The deferral logic ensures that deferrals do not cause the job to miss its deadline. 

3.5. Facility Control via Lightweight MPC 

To reduce facility overhead while maintaining safe operating conditions, we implement a lightweight model 

predictive control (MPC) loop that adjusts the cooling temperature setpoint over time. The controller is 

“lightweight” because it uses (i) a simple predictive facility model and (ii) a small discrete set of feasible setpoint 

candidates evaluated by enumeration, rather than solving a large nonlinear optimization problem. 

3.5.1. Control Objective and Signals 

At each control update time t, the MPC receives: 

• the current cooling setpoint 𝑇𝑠𝑒𝑡(𝑡)[°𝐶], 

• a facility load proxy 𝑛run(𝑡) (the number of running jobs), 

• a short-horizon forecast of the ambient temperature {𝑇𝑎𝑚𝑏(𝑡 + 𝑘)} − {𝑘 = 0}^{𝐻 − 1} (generated by the 

simulator’s diurnal ambient model). 

The controller selects a future setpoint sequence {𝑇𝑠𝑒𝑡(𝑡 + 𝑘)} − {𝑘 = 0}^{𝐻 − 1}  𝑡hat minimizes predicted 

facility energy while discouraging aggressive, rapidly varying setpoints (smooth operation). 

3.5.2. Time Discretization, Horizon, and Constraints 

We operate in discrete time with a fixed control interval: 

• Control interval: 𝛥𝑡𝑐𝑡𝑟𝑙 = 1 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

• Prediction horizon: H=30 steps (i.e., 30 minutes look-ahead) 

The setpoint is constrained to remain within an allowable band: 

 𝑇𝑚𝑖𝑛 ≤  𝑇𝑠𝑒𝑡(𝑡 + 1) ≤ 𝑇𝑚𝑎𝑥  , 𝑓or k =  0, … , H − 1, 

where we use: 

• Allowed temperature band:  𝑻𝒎𝒊𝒏 = 𝟔∘𝑪, 𝑻𝒎𝒂𝒙 = 𝟏𝟐∘𝑪 

To avoid unrealistic or unstable actuation, we also enforce a ramp-rate constraint: 

∣ 𝑇𝑠𝑒𝑡(𝑡 + 𝑘 + 1) − 𝑇𝑠𝑒𝑡(𝑡 + 𝑘) ∣≤ Δ𝑡𝑚𝑎𝑥 , 𝑓𝑜𝑟 𝑘 =  0, … , 𝐻 − 2, 

with: 

• Ramp limit: 𝒓𝒎𝒂𝒙 =𝟎. 𝟐∘C per minute 

In practice, the ramp limit is enforced by evaluating only a discrete set of candidates within ±𝑟𝑚𝑎𝑥  the previous 

setpoint (Section 3.5.5). 

3.5.3. Predictive Facility Energy Model 

Over the horizon, the controller predicts facility power 𝑃̂𝑓𝑎𝑐(𝑡 + 𝑘) using the same analytic model as the 

simulator. Total facility power is decomposed as: 

𝑃̂𝑓𝑎𝑐(𝑡 + 𝑘) = 𝑃̂𝐼𝑇(𝑡 + 𝑘) + 𝑃𝑐𝑟𝑦𝑜 + 𝑃̂𝑐𝑜𝑜𝑙(𝑡 + 𝑘)  
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In the implementation: 

• 𝑃̂𝐼𝑇(𝑡 + 𝑘) = 𝑛𝑟𝑢𝑛(𝑡 + 𝑘). 𝑃𝑗𝑜𝑏 , 𝑤ℎ𝑒𝑟𝑒 𝑃𝑗𝑜𝑏 =  0.4𝑘𝑊/𝑗𝑜𝑏, 

• 𝑃𝑐𝑟𝑦𝑜 =3.0 kW (constant cryogenic overhead). 

Cooling power is modeled via rejected heat and COP: 

𝑄̂𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑(𝑡 + 𝑘) = 𝛾 · (𝑃̂𝐼𝑇(𝑡 + 𝑘) + 𝑃𝑐𝑟𝑦𝑜), 𝑤𝑖𝑡ℎ 𝛾 = 1.09, 

𝑃̂cool(𝑡 + 𝑘) =
𝑄̂𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑(𝑡+𝑘)

COP(T𝑠𝑒𝑡 (𝑡+𝑘)).1−𝜂𝑒𝑐𝑜𝑛(𝑡=𝑘))
 . 

We use a linear COP model defined by endpoints over the allowable band: 

COP(6°C) = 2.32 and COP(12°C) = 5.66,  

with linear interpolation between these endpoints and clipping to [2.32, 5.66] if needed. 

3.5.4. Economizer Model 

An optional economizer gain is applied when ambient is cool and setpoint is high. We use: 

• ambient threshold 𝑇𝑎𝑚𝑏(𝑡) < 18∘𝐶,  

• setpoint threshold 𝑇𝑠𝑒𝑡(𝑡) ≥ 10∘𝐶 , 

• maximum economizer gain =0.21 (tuned value), which reduces cooling power by up to 21% depending on 

ambient. 

We set 𝜂𝑒𝑐𝑜𝑛 (𝑡 + 𝑘) = 𝑔𝑒𝑐𝑜𝑛 , 𝑚𝑎𝑥 when (𝑇𝑎𝑚𝑏(𝑡 + 𝑘) ≤ 𝑇𝑎𝑚𝑏 , 𝑡ℎ) and (𝑇𝑠𝑒𝑡(𝑡 + 𝑘) ≥ 𝑇𝑠𝑒𝑡 , 𝑡ℎ); otherwise 𝜂𝑒𝑐𝑜𝑛 (𝑡 +

𝑘) = 0. 

Facility energy per step is: 

𝐸̂𝑓𝑎𝑐(t + k)  = 𝑃̂𝑓𝑎𝑐(t + k). 𝛥𝑡𝑐 /60, in kWh (since 𝛥𝑡𝑐 is in minutes). 

3.5.5. Optimization Problem and Cost Function 

At each control update, the MPC solves: 

𝑚𝑖𝑛𝑇𝑠𝑒𝑡(𝑡+1:𝑡+𝐻) ∑ (𝑤𝐸 𝐸̂𝑓𝑎𝑐 (𝑡 + 𝑘) + 𝑤𝛥(𝑇𝑠𝑒𝑡 (𝑡 + 𝑘) − 𝑇𝑠𝑒𝑡(𝑡 + 𝑘 − 1))
2

)

𝐻−1

𝑘=1

 

subject to: 

• setpoint bounds 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑠𝑒𝑡(𝑡 + 𝑘)≤ 𝑇𝑚𝑎𝑥, 

• 𝑇𝑠𝑒𝑡(𝑡 + 𝑘 + 1) − 𝑇𝑠𝑒𝑡(𝑡 + 𝑘)| ≤ 𝛥𝑇𝑚𝑎𝑥, 

• and initialization equal to the previously applied setpoint 𝑇𝑠𝑒𝑡(𝑡 − 1). 

We use the following weights: 

• Energy weight: 𝑤𝐸  =1.0 

• Smoothness (ramp penalty) weight: 𝑤𝑅 =0.05 

Intuitively, 𝑤𝐸  drives the controller toward energy-efficient (typically warmer) setpoints, while 𝑤𝑅 avoids jittery 

behavior and promotes gradual setpoint changes that are more realistic for cooling equipment. Increasing 𝑤𝛥 

yields smoother but potentially less energy-optimal operation. 
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3.5.6. Candidate Trajectory Generation (Lightweight Search) 

Instead of continuous optimization, we enumerate a small, feasible set of candidate setpoint trajectories that 

respect bounds and ramp limits. 

We discretize the setpoint adjustment per step as: 

𝛥𝑇 ∈ {−0.2, 0, +0.2}∘𝐶, 

and generate trajectories over the horizon by applying these increments from the current setpoint, pruning any 

candidate that violates 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 or 𝑟𝑚𝑖𝑛. In practice, we cap the number of evaluated candidates to keep runtime 

predictable (e.g., by limiting branching or sampling a subset if the full tree is large). In our implementation, this 

yields on the order of hundreds to a few thousand candidates per control update, which is easily tractable in 

Python. 

For each candidate trajectory 𝑇𝑠𝑒𝑡(𝑡 + 1: 𝑡 + 𝐻).we compute the objective 𝐽 from the predicted energies and 

ramp penalties, then select the minimum-cost trajectory. 

3.5.7. Receding-horizon Execution 

The MPC operates in a standard receding-horizon manner: 

1. At time t, build forecasts for ambient temperature.  

2. Enumerate feasible candidate setpoint sequences over the horizon.  

3. Evaluate the cost 𝐽 for each candidate and select the best one. 

4. Apply only the first action 𝑇𝑠𝑒𝑡(𝑡). 

5. Advance time by 𝛥𝑡𝑐 and repeat. 

This structure is robust to modeling mismatch because it continuously re-optimizes using updated 

measurements/forecasts, while remaining simple enough for “one-click reproducibility.” 

3.5.8. Practical Notes and Limitations 

• Safety: The setpoint band [18,27]∘𝐶 represents the operational envelope enforced by the controller. Any 

additional thermal safety constraints (e.g., limits on cold-aisle temperature, rack inlet temperature, or 

cryogenic stage constraints) can be added as hard constraints in the candidate pruning step. 

• Model fidelity: The facility model is intentionally simplified; the MPC is designed to capture the first-order 

energy–temperature trade-off rather than detailed thermodynamics. We therefore treat absolute savings 

as scenario-dependent, while emphasizing comparative trends and statistically validated differences. 

• Reproducibility: All MPC parameters (𝛥𝑡𝑐𝑡𝑟𝑙 = 1 𝑚𝑖𝑛, 𝐻 = 30, 𝑇𝑚𝑖𝑛 = 6∘𝐶, 𝑇𝑚𝑎𝑥 = 12∘𝐶, 𝑟𝑚𝑎𝑥 = 2∘𝐶, 𝑤𝐸 , 𝑤𝑅) and 

the exact candidate set are fixed and should be listed in parameters table. 

Fairness and multi-tenancy 

To capture multi-tenant effects, each job is labelled either normal or priority. Priority jobs have stricter 

deadlines (e.g., 120 s) than normal jobs (e.g., 180 s) and are meant to represent latency-sensitive tasks. 

We compute per-class metrics: 

• Mean wait time, E[wait | 𝑐𝑗], 

• SLA miss rate, Pr( 𝑓𝑗 > 𝑑𝑗 | 𝑐𝑗), 

• 95th-percentile wait, 𝑃95(wait | 𝑐𝑗). 
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We also compute aggregate fairness metrics on a per-job basis: 

• Jain’s fairness index [14] for a vector of per-job waits, 

• Gini coefficient for the same vector. 

Perfect equality corresponds to a Jain index of 1 and a Gini coefficient of 0; lower Jain and higher Gini values 

indicate more unequal wait distributions [15]. 

3.6. Metrics, Statistics, and Experimental Setup 

We evaluate each policy using the following primary KPIs: 

• Facility energy 𝐸𝑓𝑎𝑐  (𝑘𝑊ℎ), computed as 𝐸𝑓𝑎𝑐 ∑ 𝑃𝑓𝑎𝑐𝑡  (𝑡)𝛥𝑡. 

• Operational emissions 𝐸𝑐𝑜2(kg𝐶𝑂2e) as: 

𝐸𝑐𝑜2 ∑
𝑃𝑓𝑎𝑐(𝑡)𝛥𝑡𝐶(𝑡)

1000𝑡  , 

where C(t) is carbon intensity in g𝐶𝑂2/kWh, Δt is in hours, and the factor 1000 converts g𝐶𝑂2 to kg𝐶𝑂2. 

• Quality of service: average queue wait time and SLA miss rate (fraction of jobs completing after their 

deadlines). 

• Deferral behavior: average number of deferrals per job. 

• Energy cost (EUR), computed under the day–night tariff by applying the time-varying electricity price to the 

facility energy consumption. 

Experimental design. We sweep random seeds, facility parameters, and policy configurations. For each setting, 

we record all KPIs and summarize performance as: 

• Mean and 95% confidence interval across seeds, computed using a Student’s t interval: 

𝑥̅ ±  𝑡0.975,𝑛−1  
𝑆

√𝑛
, 

where n is the number of seeds, 𝑥̅ is the sample mean, and s is the sample standard deviation across seeds. 

• Nonparametric bootstrap significance test (4000 replicates) for the one-sided hypothesis that the mean 

energy reduction of MPC vs. fixed-setpoint is greater than zero. 

3.7. Summary of Control and Scheduling Parameters 

To support transparency and reproducibility, Table 1 summarizes the key parameters used for carbon-aware 

scheduling and model predictive cooling control. Unless stated otherwise, all experiments use this fixed 

parameter set consistently across random seeds, scheduler baselines, and stress scenarios. Carbon-aware 

scheduling applies discrete deferrals of 4 minutes. The flexible policy allows up to eight deferrals per job to shift 

execution toward lower-carbon periods when deadline slack permits, while the strict policy limits deferrals to one 

or two steps to reduce delay. Both rely on a 60-minute carbon-intensity forecast, with deferrals triggered only 

when the expected reduction exceeds predefined thresholds, balancing emissions savings against deadline 

compliance. The MPC operates at a 1-minute control interval with a 30-minute prediction horizon. Cooling 

setpoints are constrained to 6-12°C with a ramp-rate limit of 0.2°C per minute to ensure realistic actuation. The 

objective emphasizes energy minimization while penalizing rapid setpoint changes. Facility parameters include a 

constant cryogenic power draw and a heat-rejection multiplier capturing auxiliary thermal loads. Together, these 

settings define a lightweight yet physically plausible configuration used throughout the evaluation. 
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Table 1: Key scheduler and MPC parameters used in experiments. 

Category Parameter Value 

Scheduler Deferral step size 4 min 

Scheduler Max deferrals (flexible) 8 

Scheduler Max deferrals (strict) 1–2 

Scheduler Carbon forecast horizon 60 min 

Scheduler Carbon threshold (flexible) ΔC ≥ 120 gCO₂/kWh 

Scheduler Carbon threshold (strict) ΔC ≥ 300 gCO₂/kWh 

MPC Control interval 1 min 

MPC Prediction horizon 30 min 

MPC Setpoint bounds 6–12 °C 

MPC Ramp limit 0.2 °C/min 

MPC Energy weight (α) 1.0 

MPC Smoothness weight (β) 0.05 

Facility Cryogenic power 3.0 kW 

Facility Heat multiplier γ 1.09 

 

4. Results and Discussion 

4.1. Facility Energy Reduction with MPC 

Fig. (3) compares total facility energy for fixed and MPC-controlled setpoints across seeds. In a representative 

run of the facility simulator, MPC reduces energy by approximately 5% relative to a fixed setpoint, with the exact 

value depending on the ambient and workload traces. When averaging over eight seeds and using the tuned 

parameter set, the reduction becomes more pronounced and stable. 

 

Figure 3: Total facility energy (kWh) under fixed-setpoint and MPC control. Error bars denote 95% confidence intervals across 

seeds. 

Table 2 reports cross-seed means and 95% confidence intervals from the analysis. The fixed-setpoint 

configuration consumes on average 19.52 kWh, while MPC reduces this to 17.73 kWh, corresponding to a mean 
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relative reduction of 9.19% with a narrow 95% CI of [9.17%, 9.21%], indicating high statistical confidence. The 

bootstrap histogram in Fig. (6) illustrates the distribution of mean reductions across 4000 bootstrap replicates; 

virtually all mass lies above zero, yielding a one-sided p-value well below 10^−3. For context, in a small-scale 

quantum facility consuming approximately 7 MWh per day, a 9% energy reduction translates to roughly 230 MWh 

of annual savings, corresponding to tens of thousands of euros per year at typical industrial electricity prices. 

Table 2: Facility energy comparison between fixed-setpoint and MPC control (8 seeds). 

Metric Mean 95% CI Low 95% CI High 

𝐸 fixed (kWh) 19.52 19.40 19.65 

𝐸 MPC (kWh) 17.73 17.62 17.84 

Reduction (%) 9.19 9.17 9.21 

 

Fig. (4) plots the facility power time series for one representative seed. MPC responds to both load and 

ambient fluctuations by gently adjusting the setpoint, keeping power lower during many intervals while respecting 

ramp constraints. This time-series view makes it clear that savings arise from many small adjustments rather than 

a few extreme setpoint changes. 

 
Figure 4: Facility power time series for one seed under fixed-setpoint and MPC policies. MPC dynamically adapts to load and 

ambient conditions, reducing power during many intervals. 

Fig. (5) Cooling setpoint evolution for fixed and MPC policies. MPC explores nearby setpoints subject to ramp 

limits to reduce energy consumption while maintaining feasible operating conditions. 

Fig. (6) summarizes the statistical significance of the observed savings. Each bar in the bootstrap histogram 

corresponds to one resampled estimate of the mean relative energy reduction across seeds. The distribution is 

tightly concentrated around 9% and lies almost entirely to the right of zero, reinforcing that the MPC consistently 

outperforms the fixed-setpoint baseline rather than benefiting from a few lucky seeds. 

4.2. Carbon-aware Emissions Reduction 

Next, we evaluate carbon-aware deferral policies within the same scheduling and facility framework. Fig. (7) 

summarizes emissions and average deferrals per job for flexible and strict variants. 

Under the flexible policy, emissions are reduced by approximately 12.76% relative to a carbon-unaware 

baseline that ignores carbon intensity. This comes at the cost of an average of 1.64 deferrals per job, which may  
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Figure 5: Cooling set point evolution for fixed and MPC policies. MPC explores nearby setpoints subject to ramp limits to 

reduce energy consumption while maintaining feasible operating conditions. 

 
Figure 6: Bootstrap distribution of mean facility energy reduction (MPC vs fixed). The vertical line at 0% indicates 

the null hypothesis; almost all mass lies to the right, yielding a one-sided 𝑝-value < 10−3. 

 
Figure 7: Emissions comparison across policies. Flexible carbon-aware deferrals achieve 12.76% reduction with 1.64 deferrals 

per job on average. Strict deferrals yield 4.63% reduction with only 0.08 deferrals per job. 



Heidary et al. The Global Environmental Engineers, 12, 2025 

 

74 

still be acceptable for latency-tolerant workloads. Under the strict policy, emissions reduction is more modest 

(4.63%), but the operational impact is smaller as well, with only 0.08 deferrals per job on average. Queueing 

metrics (mean wait and SLA miss rate) remain close to the corresponding baseline values in both cases, indicating 

that deadlines were configured conservatively. 

4.3. Pareto Trade-offs between Energy and Queueing 

By sweeping deferral aggressiveness (thresholds, step size, maximum deferrals, and forecast horizon), we 

obtain a Pareto set of policies that trade energy or emissions savings against queueing metrics. Fig. (8) plots 

energy savings versus average wait time; Fig. (9) shows energy savings versus SLA miss rate. 

As expected, more aggressive deferral settings move the operating point toward higher energy savings but also 

higher average waits and, in extreme cases, increased SLA miss rates. However, the Pareto front contains several 

attractive points that achieve 7–10% savings with negligible SLA misses, highlighting the value of moderate 

carbon-aware deferrals rather than extreme policies. 

 

Figure 8: Pareto frontier of energy savings versus average wait time obtained by sweeping deferral aggressiveness parameters. 

Markers denote policy variants; the frontier illustrates the trade-off between efficiency and delay. 

 

Figure 9: Pareto frontier of energy savings versus SLA miss rate. Several policies achieve substantial savings with near-zero SLA 

violations. 
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4.4. Nonlinear COP Ablation 

To evaluate the impact of cooling model fidelity, we compare a linear COP model against a nonlinear variant 

that captures partial-load behavior more realistically. Fig. (10) shows the mean facility energy under both models 

for the same set of seeds and policies. 

On average across five seeds, the nonlinear COP model yields an additional 1.51% energy reduction compared 

to the linear approximation. This gain stems from a more accurate representation of efficiency improvements at 

moderate load and at slightly elevated setpoints, which the MPC can exploit. While the absolute difference is 

smaller than the gap between fixed and MPC control, it points to the importance of using physically grounded 

facility models in quantitative studies. 

 
Figure 10: Ablation: linear versus nonlinear COP model. The nonlinear model yields an additional 1.51% facility energy 

reduction on average across five seeds. 

4.5. Scheduler Baselines: FIFO vs EDF 

We compare FIFO and non-preemptive EDF schedulers under identical workloads, deadlines, and facility 

control. Fig. (11) shows average wait time and SLA miss rate for both policies. 

In our configuration, both schedulers achieve nearly zero SLA misses, thanks to conservative deadlines. EDF 

modestly reduces average wait time relative to FIFO, as expected when deadlines are heterogeneous, but the 

difference in facility energy is negligible because both induce similar aggregate load profiles. This suggests that, 

under the tested conditions, more sophisticated deadline-aware scheduling may not significantly change energy 

outcomes if facility control is already responsive; however, EDF provides a useful baseline and may matter more 

when deadlines are tighter. 

 
Figure 11: Scheduler comparison (FIFO vs EDF). EDF slightly reduces average wait while preserving near-zero SLA miss rate; 

facility energy remains similar under both schedulers. 
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4.6. Fairness Across Job Classes 

To examine fairness, we assign 30% of jobs to a priority class with tighter deadlines and enable carbon-aware 

deferrals with priority protection. Fig. (12) plots per-job wait distributions for normal and priority jobs. 

Priority jobs experience near-zero waits, with the 95th percentile of the waiting-time distribution effectively at 

zero in our configuration. Normal jobs absorb most of the deferrals and associated delays, leading to a skewed 

wait distribution. Aggregate fairness metrics reflect this: Jain’s index on per-job waits is approximately 0.27 and the 

Gini coefficient is around 0.73, indicating substantial inequality. This is by design—the configuration enforces 

strong priority isolation—but it demonstrates that carbon-aware schemes can amplify or mitigate inequities 

depending on how deferrals and deadlines are assigned. 

For context, a Jain index of 0.27 indicates a highly skewed delay distribution compared to typical shared 

systems, where values above 0.7 are often considered reasonably fair. The corresponding Gini coefficient of 0.73 

implies that a small fraction of jobs absorb most of the waiting time. In our setting, this inequality is intentional 

and tunable: relaxing priority protection or limiting maximum deferrals increases Jain’s index at the cost of 

reduced emissions savings. 

 

Figure 12: Fairness analysis: violin plots of per-job waits for normal and priority jobs under a carbon-aware deferral policy with 

priority protection. Priority jobs see almost zero wait; normal jobs absorb most delays, yielding a low Jain index and high Gini 

coefficient. 

4.7. Stress Scenarios: High Load and Heat Wave 

We evaluate robustness under two stress scenarios: 

• High load: arrival rates are scaled up, increasing queue utilization. 

• Heat wave: ambient temperature baseline and swing are increased, making cooling more expensive. 

Fig. (13) summarizes the mean facility energy reduction for the default, high-load, and heat-wave scenarios 

based on a stress-scenario simulation. In all cases, the average reduction remains positive and of similar 

magnitude, with mean savings around 9–9.5% and overlapping confidence intervals. This suggests that the 

combination of MPC and moderate carbon-aware deferrals generalizes reasonably well across operating 

conditions, though more extreme or coupled stressors (e.g., simultaneous hardware failures and heat waves) 

warrant separate study. 
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Figure 13: Stress scenarios: facility energy reduction (MPC vs fixed) under default, high-load, and heat-wave conditions. Savings 

remain robust and positive across scenarios. 

4.8. Cost Analysis Under a Day–night Tariff 

To relate energy savings to economic impact, we apply a simple sinusoidal day–night tariff with higher prices 

during peak demand hours. Fig. (14) shows the cost comparison between fixed and MPC policies across five seeds. 

Because the MPC primarily reduces energy during higher-load periods, cost savings track energy savings 

closely. Across seeds, both energy and cost savings fall in the 9–9.2% range, with the reported cost-saving 

percentages closely matching the energy-saving percentages. This alignment is expected given the relatively 

smooth price signal but remains relevant for operators who primarily reason about energy bills rather than 

kilowatt-hours. 

 

Figure 14: Cost comparison under a day–night tariff. MPC-based setpoint control yields cost savings closely aligned with 

energy savings (around 9%). 

4.9. Tuning Facility Parameters 

A separate tuning experiment samples candidate facility and ambient parameters (e.g., setpoint, cooling 

fraction, COP bounds, ambient baseline and swing, economizer gain) and evaluates average energy reductions 

across multiple seeds. The best candidate in our sweep yields a mean reduction of approximately 9.41%, slightly 
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improving upon the default configuration without introducing instability. Such parameter sweeps can be 

automated for different climates or hardware generations. 

4.10. Summary of Findings 

Our results show that even a relatively simple combination of carbon-aware scheduling and MPC-based 

setpoint control can deliver meaningful energy and emissions reductions in a simulated GQDC: 

• Facility energy reductions of about 9% are achieved with tight confidence intervals and strong bootstrap 

evidence against the null hypothesis of no improvement. 

• Carbon-aware deferrals can reduce emissions by 4–13% depending on aggressiveness, with operational 

overheads quantified as deferrals per job. 

• Nonlinear COP modeling modestly enhances savings and increases realism, highlighting the role of 

accurate facility models. 

• Fairness analysis reveals how deferrals can disproportionately impact specific job classes, underscoring 

the need for explicit fairness objectives. 

• Robustness checks under high-load and heat-wave scenarios suggest that the qualitative benefits of MPC 

and carbon-aware scheduling persist under stress. 

4.11. Relation to Prior Work 

Compared to industrial carbon-aware systems for classical data centers [6, 9, 10], our framework operates at 

smaller scale and relies on synthetic signals, but it highlights similar design tensions between temporal shifting, 

SLA preservation, and fairness. Relative to prior work on energy efficiency and cooling optimization [11-13], our 

contribution is to integrate a simplified yet tunable facility model into a workload-level scheduling pipeline for 

quantum workloads. 

Our earlier work on deep learning for solar power forecasting [5] focused on improving short-term solar-power 

forecasts via LSTM models trained on PVGIS–SARAH3 data [1-4]. The present study can be viewed as a 

complementary effort: given a carbon signal (forecasted or synthetic), how should a quantum data center adjust 

scheduling and cooling to exploit that information? Future work could integrate explicit forecast models and 

quantify the impact of forecast errors on scheduling decisions. 

4.12. Limitations and Threats to Validity 

Several limitations of our study warrant caution: 

• Synthetic signals and workloads. We use synthetic carbon, price, ambient, and workload traces. While 

these are parameterized to mimic realistic diurnal patterns, they cannot capture all intricacies of real grids 

or quantum users. 

• Reduced-order facility model. Our COP models and load aggregation are simplified representations of 

complex cooling and cryogenic systems. Detailed CFD or plant-level simulations may reveal additional 

interactions. 

• Single-site setting. We consider a single GQDC; multi-site scheduling with geospatial carbon variation 

introduces additional opportunities and constraints [10, 6]. 

• Limited policy space. We focus on simple deferral heuristics, FIFO/EDF schedulers, and a lightweight 

MPC. More advanced optimization (e.g., MILP, reinforcement learning, or policy search) could uncover 

better trade-offs [13, 7]. 

Despite these limitations, the combination of ablations (e.g., nonlinear COP), stress scenarios, and bootstrap 

testing supports the qualitative robustness of the main findings. 
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4.13. Future Work 

Future directions include: 

• Integrating data-driven carbon and price forecasts and quantifying sensitivity to forecast errors. 

• Extending the scheduler to handle precedence constraints in multi-stage quantum workflows, drawing on 

recent work in carbon- and precedence-aware scheduling [8, 9].  

• Incorporating explicit fairness objectives (e.g., constraints on Jain index or Gini coefficient) into the 

optimization. 

• Scaling to multi-site GQDCs with latency and bandwidth constraints, enabling joint spatial and temporal 

carbon-aware orchestration. 

• Validating the reduced-order facility model against detailed simulations or measurements from prototype 

quantum data centers. 

5. Conclusion 

We introduced a simulation-based framework for green quantum data centers that couples carbon-aware job 

deferrals with model predictive cooling setpoint control. Using synthetic but tunable workloads and signals, we 

quantified facility energy savings, emissions reductions, queueing behavior, fairness across job classes, scheduler 

baselines, stress scenarios, and economic impacts. 

Our experiments show that MPC can reduce facility energy by roughly 9% with tight confidence intervals and 

strong bootstrap evidence, while carbon-aware deferrals yield additional emissions reductions in the 4–13% range 

depending on aggressiveness. Nonlinear COP modeling and stress tests further demonstrate the importance of 

facility realism and robustness analysis. The full artifact—including code, configuration, figures, tables, and 

document builders—enables one-click reproduction and extension, offering a reusable template for future work 

on sustainable quantum computing infrastructure. 
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