Catalytic Removal of Volatile Organic Compounds over Porous Catalysts
PDF

Keywords

ordered porous material
metal oxide
perovskite-type oxide
supported catalyst
volatile organic compound removal

How to Cite

1.
Xingtian Zhao, Shaohua Xie, Huanggen Yang, Jiguang Deng, Hongxing Dai. Catalytic Removal of Volatile Organic Compounds over Porous Catalysts. Glob. Environ. Eng. [Internet]. 2015 Jul. 14 [cited 2024 Sep. 19];2(1):1-14. Available from: https://avantipublisher.com/index.php/tgevnie/article/view/328

Abstract

In this review, we summarize the recent research progress on the preparation and catalytic performance of meso- and macroporous metal oxide or mixed metal oxide (including manganese oxides, cobalt oxides, iron oxides, chromium oxides, and perovskite-type oxides) catalysts and their supported transition metal and noble metal catalysts for the oxidative removal of typical volatile organic compounds (VOCs), which were prepared using the hard-templating and polyvinyl alcohol-protected reduction methods, respectively. Most of these porous catalysts performed well for the addressed reactions, which was associated with their surface areas, adsorbed oxygen species concentrations, low-temperature reducibility, interactions between noble metal or metal oxide and support as well as porous structures. In addition, the perspectives for developing high-performance catalytic materials and novel VOCs removal technologies are also proposed.

https://doi.org/10.15377/2410-3624.2015.02.01.1
PDF

References

Zhang CB, He H and Tanaka K. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catal Commun 2005; 6: 211-214. http://dx.doi.org/10.1016/j.catcom.2004.12.012

Zhang CB, He H and Tanaka K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl Catal B: Environ 2006; 65: 37-43. http://dx.doi.org/10.1016/j.apcatb.2005.12.010

Zhang CB, Liu FD, Zhai YP, Ariga H, Yi Y nad Liu YC, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew Chem Int Ed 2012; 51: 9628-9632. http://dx.doi.org/10.1002/anie.201202034

Huang ZW, Gu X, Cao QQ, Hu PP, Hao JM and Li JH, et al. Catalytically active single-atom sites fabricated from silver particles. Angew Chem Int Ed 2012; 51: 4198-4203. http://dx.doi.org/10.1002/anie.201109065

Hu PP, Huang ZW, Amghouz Z, Makkee M, Xu F and Kapteijn F, et al. Electronic metal-support interactions in single-atom catalysts. Angew Chem 2014; 126: 3486-3489. http://dx.doi.org/10.1002/ange.201309248

Chen JY, Li GY, He ZG and An TC. Adsorption and degradation of model volatile organic compounds by a combined titania–montmorillonite–silica photocatalyst. J Hazard Mater 2011; 190: 416-423. http://dx.doi.org/10.1016/j.jhazmat.2011.03.064

Li GY, Zhang ZY, Sun HW, Chen JY, An TC and Li B. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: A pilotscale investigation. J Hazard Mater 2013; 250-251: 147-154. http://dx.doi.org/10.1016/j.jhazmat.2013.01.059

An TC, Sun L, Li GY, Gao YP and Ying GG. Photocatalytic degradation and detoxification of o-chloroaniline in the gas phase: Mechanistic consideration and mutagenicity assessment of its decomposed gaseous intermediate mixture. Appl Catal B: Environ 2011; 102: 140-146. http://dx.doi.org/10.1016/j.apcatb.2010.11.035

Chen JY, Liu XL, Li GY, Nie X, An TC, Zhang SQ, Zhao HJ. Synthesis and characterization of novel SiO2 and TiO2 copillared montmorillonite composite for adsorption and photocatalytic degradation of hydrophobic organic pollutants in water. Catal Today 2011; 164: 364-369. http://dx.doi.org/10.1016/j.cattod.2010.11.014

An TC, Wan SG, Li GY, Sun L, Guo B. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J Hazard Mater 2010; 183: 372-380. http://dx.doi.org/10.1016/j.jhazmat.2010.07.035

Li GY, Wan SG, An TC. Efficient bio-deodorization of aniline vapor in a biotrickling filter: Metabolic mineralization and bacterial community analysis. Chemosphere 2012; 87: 253- 258. http://dx.doi.org/10.1016/j.chemosphere.2011.12.045

Zekker I, Kroon K, Rikmann E, Tenno T, Tomingas M, Vabamäe P, Vlaeminck SE, Tenno T. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor. Biodegradation 2012; 23: 739- 749. http://dx.doi.org/10.1007/s10532-012-9549-6

Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Vabamäe P, Tomingas M, Tenno T. Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation 2012; 23: 547-560. http://dx.doi.org/10.1007/s10532-011-9532-7

Zekker I, Rikmann E, Tenno T, Saluste A, Tomingas M, Menert A, Loorits L, Lemmiksoo V, Tenno T. Achieving nitritation and anammox enrichment in single moving-bed biofilm reactor treating reject water. Environ Technol 2012; 33: 703-710. http://dx.doi.org/10.1080/09593330.2011.588962

Li FH, Fu XR, Huang J, Zhai JP. Synthesis of mesostructured iron oxides with potential As(V) adsorption application. Chem Res Chin Univ 2012; 28: 559-562.

Sinha AK, Suzuki K. Three-dimensional mesoporous chromium oxide: A highly efficient material for the elimination of volatile organic compounds. Angew Chem 2005; 117: 275- 277. http://dx.doi.org/10.1002/ange.200461284

Sinha AK, Suzuki K. Novel mesoporous chromium oxide for VOCs elimination. Appl Catal B: Environ 2007; 70: 417-422. http://dx.doi.org/10.1016/j.apcatb.2005.10.035

Ryoo R, Joo SH, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 1999; 103: 7743-7746. http://dx.doi.org/10.1021/jp991673a

Bai BY, Arandiyan H, Li JH. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B: Environ 2013; 142-143: 677-683. http://dx.doi.org/10.1016/j.apcatb.2013.05.056

Xia YS, Dai HX, Jiang HY, Deng JG, He H, Au CT. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environ Sci Technol 2009; 43: 8355-8360. http://dx.doi.org/10.1021/es901908k

Xia YS, Dai HX, Jiang HY, Zhang L, Deng JG, Liu YX. Threedimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. J Hazard Mater 2011; 186: 84-91. http://dx.doi.org/10.1016/j.jhazmat.2010.10.073

Xia YS, Dai HX, Jiang HY, Zhang L. Three-dimensional ordered mesoporous cobalt oxides: Highly active catalysts for the oxidation of toluene and methanol. Catal Commun 2010; 11: 1171-1175. http://dx.doi.org/10.1016/j.catcom.2010.07.005

Deng JG, Zhang L, Dai HX, Xia YS, Jiang HY, Zhang H, et al. Ultrasound- assisted nanocasting fabrication of ordered mesoporous MnO2 and Co3O4 with high surface areas and polycrystalline walls. J Phys Chem C 2010; 114: 2694-2700. http://dx.doi.org/10.1021/jp910159b

Xia YS, Dai HX, Zhang L, Deng JG, He H, Au CT. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three- dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Appl Catal B: Environ 2010; 100: 229-237. http://dx.doi.org/10.1016/j.apcatb.2010.07.037

Nair MM, Kleitz F, Kaliaguine S. Kinetics of methanol oxidation over mesoporous perovskite catalysts. ChemCatChem 2012; 4: 387-394. http://dx.doi.org/10.1002/cctc.201100356

Gao BZ, Deng JG, Liu YX, Zhao ZX, Li XW, Wang Y, et al. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chin J Catal 2013; 34: 2223-2229. http://dx.doi.org/10.1016/S1872-2067(12)60689-5

Ying F, Wang SJ, Au CT, Lai SY. Highly active and stable mesoporous Au/CeO2 catalysts prepared from MCM-48 hardtemplate. Microporous Mesoporous Mater 2011; 142: 308- 315. http://dx.doi.org/10.1016/j.micromeso.2010.12.017

Wang YF, Zhang CB, Liu FD, He H. Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene. Appl Catal B: Environ 2013; 142-143: 72-79. http://dx.doi.org/10.1016/j.apcatb.2013.05.003

Liu YX, Dai HX, Deng JG, Xie SH, Yang HG, Tan W, et al. Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. J Catal 2014; 309: 408-418. http://dx.doi.org/10.1016/j.jcat.2013.10.019

Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu GQ, et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for lowtemperature oxidation of trace ethylene. J Am Chem Soc 2010; 132: 2608-2613. http://dx.doi.org/10.1021/ja906274t

Holland BT, Blanford CF, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 1998; 281: 538-540. http://dx.doi.org/10.1126/science.281.5376.538

Zhang J, Jin Y, Li CY, Shen YN, Han L, Hu ZX, et al. Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Appl Catal B: Environ 2009; 91: 11-20. http://dx.doi.org/10.1016/j.apcatb.2009.05.001

Liu BC, Li CY, Zhang YF, Liu Y, Hu WT, Wang Q, et al. Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst. Appl Catal B: Environ 2012; 111-112: 467- 475. http://dx.doi.org/10.1016/j.apcatb.2011.10.036

Liu Y, Liu BC, Wang Q, Li CY, Hu WT, Liu YX, et al. Threedimensionally ordered macroporous Au/CeO2–Co3O4 catalysts with mesoporous walls for enhanced CO preferential oxidation in H2-rich gases. J Catal 2012; 296: 65- 76. http://dx.doi.org/10.1016/j.jcat.2012.09.003

Liu BC, Liu Y, Li CY, Hu WT, Jing P, Wang Q, et al. Threedimensionally ordered macroporous Au/CeO2−Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde. Appl Catal B: Environ 2012; 127: 47-58. http://dx.doi.org/10.1016/j.apcatb.2012.08.005

Xie SH, Deng JG, Zang SM, Yang HG, Guo GS, Arandiyan H, et al. Au–Pd/3DOM Co3O4: Highly active and stable nanocatalysts for toluene oxidation. J Catal 2015; 322: 38- 48. http://dx.doi.org/10.1016/j.jcat.2014.09.024

Li HN, Zhang L, Dai HX, He H. Facile synthesis and unique physicochemical properties of three-dimensionally orderedmacroporous magnesium oxide, gamma-alumina, and ceriazirconia solid solutions with crystalline mesoporous walls. Inorg Chem 2009; 48: 4421-4434. http://dx.doi.org/10.1021/ic900132k

Zhang RZ, Dai HX, Du YC, Zhang L, Deng JG, Xia YS, et al. P123−PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoids in the crystalline walls. Inorg Chem 2011; 50: 2534-2544. http://dx.doi.org/10.1021/ic1023604

Xie SH, Dai HX, Deng JG, Liu YX, Yang HG, Jiang Y, et al. Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale 2013; 5: 11207-11219. http://dx.doi.org/10.1039/c3nr04126c

Niu JR, Deng JG, Liu W, Zhang L, Wang GZ, Dai HX, et al. Nanosized perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate. Catal Today 2007; 126: 420-429. http://dx.doi.org/10.1016/j.cattod.2007.06.027

Deng JG, Dai HX, Jiang HY, Zhang L, Wang GZ, He H, et al. Hydrothermal fabrication and catalytic properties of La1−xSrxM1−yFeyO3 (M = Mn, Co) that are highly active for the removal of toluene. Environ Sci Technol 2010; 44: 2618- 2623. http://dx.doi.org/10.1021/es9031997

Deng JG, Zhang L, Dai HX, He H, Au CT. Strontium-doped lanthanum cobaltite and manganite: Highly active catalysts for toluene complete oxidation. Ind Eng Chem Res 2008; 47: 8175-8183. http://dx.doi.org/10.1021/ie800585x

Deng JG, Zhang L, Dai HX, He H, Au CT, Single-crystalline La0.6Sr0.4CoO3−δ nanowires/nanorods derived hydrothermally without the use of a template: Catalysts highly active for toluene complete oxidation. Catal Lett 2008; 123: 294-300. http://dx.doi.org/10.1007/s10562-008-9422-8

Deng JG, Zhang Y, Dai HX, Zhang L, He H, Au CT. Effect of hydrothermal treatment temperature on the catalytic performance of single-crystalline La0.5Sr0.5MnO3−δ microcubes for the combustion of toluene. Catal Today 2008; 139: 82-87. http://dx.doi.org/10.1016/j.cattod.2008.08.010

Deng JG, Zhang L, Dai HX, He H, Au CT. Hydrothermally fabricated single-crystalline strontium-substituted lanthanum manganite microcubes for the catalytic combustion of toluene. J Mol Catal A: Chem 2009; 299: 60-67. http://dx.doi.org/10.1016/j.molcata.2008.10.006

Sadakane M, Asanuma T, Kubo J, Ueda W. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method. Chem Mater 2005; 17: 3546-3551. http://dx.doi.org/10.1021/cm050551u

Liu YX, Dai HX, Deng JG, Zhang L, Au CT. Threedimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible lightdriven photocatalytic performance for phenol degradation. Nanoscale 2012; 4: 2317-2325. http://dx.doi.org/10.1039/c2nr12046a

Wang Y, Dai HX, Deng JG, Liu YX, Zhao ZX, Li XW, et al. Three-dimensionally ordered macroporous InVO4: Fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chem Eng J 2013; 226: 87-94. http://dx.doi.org/10.1016/j.cej.2013.04.032

Liu YX, Dai HX, Deng JG, Zhang L, Zhao Z X, Li XW, et al. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation. Inorg Chem 2013; 52: 8665-8676. http://dx.doi.org/10.1021/ic400832h

Liu YX, Dai HX, Deng JG, Zhang L, Gao BZ, Wang Y, et al. PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Appl Catal B: Environ 2013; 140-141: 317-326. http://dx.doi.org/10.1016/j.apcatb.2013.04.025

Liu YX, Dai HX, Du YC, Deng JG, Zhang L, Zhao ZX, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J Catal 2012; 287: 149-160. http://dx.doi.org/10.1016/j.jcat.2011.12.015

Liu YX, Dai HX, Deng JG, Li XW, Wang Y, Arandiyan H, et al. Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal 2013; 305: 146-153. http://dx.doi.org/10.1016/j.jcat.2013.04.025

Ji KM, Dai HX, Deng JG, Song LY, Gao BZ, Wang Y, et al. Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: Highly active nanocatalysts for the combustion of toluene. Appl Catal B: Environ 2013; 129: 539- 548. http://dx.doi.org/10.1016/j.apcatb.2012.10.005

Li XW, Dai HX, Deng JG, Liu YX, Zhao ZX, Wang Y, et al. In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Appl Catal A: Gen 2013; 458: 11-20. http://dx.doi.org/10.1016/j.apcata.2013.03.022

Jiang Y, Deng JG, Xie SH, Yang HG, Dai HX. Au/MnOx/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the complete oxidation of toluene. Ind Eng Chem Res 2015; 54: 900-910. http://dx.doi.org/10.1021/ie504304u

Liu YX, Dai HX, Du YC, Deng JG, Zhang L, Zhao ZX. Lysineaided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Appl Catal B: Environ 2012; 119-120: 20-31. http://dx.doi.org/10.1016/j.apcatb.2012.02.010

Ji KM, Dai HX, Deng JG, Zhang L, Wang F, Jiang HY, et al. Three-dimensionally ordered macroporous SrFeO3−δ with high surface area: Active catalysts for the complete oxidation of toluene. Appl Catal A: Gen 2012; 425-426: 153-160. http://dx.doi.org/10.1016/j.apcata.2012.03.013

Ji KM, Dai HX, Dai JX, Deng JG, Wang F, Zhang H, et al. PMMA-templating preparation and catalytic activities of three-dimensional macroporous strontium ferrites with high surface areas for toluene combustion. Catal Today 2013; 201: 40-48. http://dx.doi.org/10.1016/j.cattod.2012.03.061

Ji KM, Dai HX, Deng JG, Jiang HY, Zhang H, Cao YJ. Catalytic removal of toluene over three-dimensionally ordered macroporous Eu1–xSrxFeO3. Chem Eng J 2013; 214: 262-271. http://dx.doi.org/10.1016/j.cej.2012.10.083

Zhao ZX, Dai HX, Deng JG, Du YC, Liu YX, Zhang L. Threedimensionally ordered macroporous La0.6Sr0.4FeO3−δ: Highefficiency catalysts for the oxidative removal of toluene. Micropor Mesopor Mater 2012; 163: 131-139. http://dx.doi.org/10.1016/j.micromeso.2012.07.006

Zhao ZX, Dai HX, Deng JG, Du YC, Liu YX, Zhang L. Preparation of three-dimensionally ordered macroporous La0.6Sr0.4Fe0.8Bi0.2O3−δ and their excellent catalytic performance for the combustion of toluene. J Mol Catal A: Chem 2013; 366: 116-125. http://dx.doi.org/10.1016/j.molcata.2012.09.014

Ji KM, Dai HX, Deng JG, Li XW, Wang Y, Gao BZ, et al. A comparative study of bulk and 3DOM-structured Co3O4, Eu0.6Sr0.4FeO3, and Co3O4/Eu0.6Sr0.4FeO3: Preparation, characterization, and catalytic activities for toluenecombustion. Appl Catal A: Gen 2012; 447-448: 41-48. http://dx.doi.org/10.1016/j.apcata.2012.09.004

Liu YX, Dai HX, Deng JG, Du YC, Li XW, Zhao ZX, et al. In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol. Appl Catal B: Environ 2013; 140-141: 493-505. http://dx.doi.org/10.1016/j.apcatb.2013.04.051

Li XW, Dai HX, Deng JG, Liu YX, Xie SH, Zhao ZX, et al. Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene. Chem Eng J 2013; 228: 965-975. http://dx.doi.org/10.1016/j.cej.2013.05.070

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 The Global Environmental Engineers